Lower Bounds for Inverse Sum Indeg Index of Graphs


Download PDF

Authors: I. GUTMAN, M. MATEJIć, E. MILOVANOVIć AND I. MILOVANOVIć

DOI: 10.46793/KgJMat2004.551G

Abstract:

Let G = (V,E), V = {1, 2,,n}, be a simple connected graph with n vertices and m edges and let d1 d2 ⋅ ⋅⋅dn > 0, be the sequence of its vertex degrees. With i j we denote the adjacency of the vertices i and j in G. The inverse sum indeg index is defined as ISI = -didj-
di+dj with summation going over all pairs of adjacent vertices. We consider lower bounds for ISI. We first analyze some lower bounds reported in the literature. Then we determine some new lower bounds.

Keywords:

Degree (of vertex), degree (of edge), inverse sum indeg index, Zagreb index.

References:

[1]   B. Bollobás and P. Erdo˝s  , Graphs of extremal weights, Ars Combin. 50 (1998), 225–233.

[2]   J. Devillers and A. T. Balaban (Eds.), Topological Indices and Related Descriptors in QSAR and QSPR, Gordon & Breach, New York, 1999.

[3]   M. Eliasi, A. Iranmanesh and I. Gutman, Multiplicative versions of first Zagreb index, MATCH Commun. Math. Comput. Chem. 68 (2012), 217–230.

[4]   S. Fajtlowicz, On conjectures on Graffiti-II, Congr. Numer. 60 (1987), 187–197.

[5]   F. Falahati–Nezhad, M. Azari and T. Došlić, Sharp bounds on the inverse sum indeg index, Discrete Appl. Math. 217 (2017), 185–195.

[6]   C. M. Fonseca and D. Stevanović, Further properties of the second Zagreb index, MATCH Commun. Math. Comput. Chem. 72 (2014), 655–668.

[7]   B. Furtula and I. Gutman, A forgotten topological index, J. Math. Chem. 53 (2015), 1184–1190.

[8]   I. Gutman and N. Trinajstić, Graph theory and molecular orbitals. Total π-electron energy of alternant hydrocarbons, Chem. Phys. Lett. 17 (1972), 535–538.

[9]   I. Gutman, B. Ruščić, N. Trinajstić and C. F. Wilcox, Graph theory and molecular orbitals. XII. Acyclic polyenes, J. Chem. Phys. 62 (1975), 3399–3405.

[10]   I. Gutman, Multiplicative Zagreb indices of trees, Bull. Int. Math. Virtual Inst. 1 (2011), 13–19.

[11]   I. Gutman and B. Furtula (Eds.), Recent Results in the Theory of Randić Index, University of Kragujevac, Kragujevac, 2008.

[12]   I. Gutman, B. Furtula, K. C. Das, E. Milovanović and I. Milovanović (Eds.), Bounds in Chemical Graph Theory – Basics, University of Kragujevac, Kragujevac, 2017.

[13]   I. Gutman, B. Furtula, K. C. Das, E. Milovanović and I. Milovanović (Eds.), Bounds in Chemical Graph Theory – Mainstreams, University of Kragujevac, Kragujevac, 2017.

[14]   I. Gutman, B. Furtula, K. C. Das, E. Milovanović and I. Milovanović (Eds.), Bounds in Chemical Graph Theory – Advances, University of Kragujevac, Kragujevac, 2017.

[15]   H. Kober, On the arithmetic and geometric means and on Hölder’s inequality, Proc. Amer. Math. Soc. 9 (1958), 452–459.

[16]   X. Li and I. Gutman, Mathematical Aspects of Randić–Type Molecular Structure Descriptors, University of Kragujevac, Kragujevac, 2006.

[17]   I. Ž. Milovanović, E. I. Milovanović, I. Gutman and B. Furtula, Some inequalities for the forgotten topological index, International Journal of Applied Graph Theory 1 (2017), 1–15.

[18]   D. S. Mitrinović and P. M. Vasić, Analytic Inequalities, Springer, Berlin, 1970.

[19]   K. Pattabiraman, Inverse sum indeg index of graphs, AKCE Int. J. Graphs Comb. (to appear).

[20]   J. Radon, Theorie und Anwendungen der Absolut Additiven Mengenfunktionen, Sitzungsber. Acad. Wissen. Wien 122, 1913, 1295–1438.

[21]   M. Randić, On characterization of molecular branching, J. Amer. Chem. Soc. 97 (1975), 6609–6615.

[22]   B. C. Rennie, On a class of inequalities, J. Aust. Math. Soc. 3 (1963), 442–448.

[23]   J. Sedlar, D. Stevanović and A. Vasilyev, On the inverse sum indeg index, Discrete Appl. Math. 184 (2015), 202–212.

[24]   R. Todeschini and V. Consonni, Handbook of Molecular Descriptors, Wiley–VCH, Weinheim, 2000.

[25]   R. Todeschini and V. Consonni, Molecular Descriptors for Chemoinformatics, Wiley–VCH, Weinheim, 2009.

[26]   D. Vukičević, Bond additive modeling 2. Mathematical properties of max-min rodeg index, Croat. Chem. Acta 83 (2010), 261–273.

[27]   D. Vukičević, Bond additive modeling 4. QSPR and QSAR studies of variable adriatic indices, Croat. Chem. Acta 84 (2011), 87–91.

[28]   D. Vukičević, Bond additive modeling 5. Mathematical properties of the variable sum exdeg index, Croat. Chem. Acta 84 (2011), 93–101.

[29]   D. Vukičević, Bond additive modeling. Adriatic indices – overview of results, in: I. Gutman, B. Furtula (Eds.), Novel Molecular Structure Descriptors – Theory and Applications II, University of Kragujevac, Kragujevac, 2010, pp. 269-302.

[30]   D. Vukičević and B. Furtula, Topological index based on the ratios of geometrical and arithmetical means of end-vertex degrees of edges, J. Math. Chem. 46 (2009), 1369–1376.

[31]   D. Vukičević and M. Gašperov, Bond additive modeling 1. Adriatic indices, Croat. Chem. Acta 83 (2010), 243–260.

[32]   B. Zhou and N. Trinajstić, On a novel connectivity index, J. Math. Chem. 46 (2009), 1252–1270.