Existence of Renormalized Solutions for Some Anisotropic Quasilinear Elliptic Equations


Download PDF

Authors: T. AHMEDATT, A. AHMED, H. HJIAJ AND A. TOUZANI

DOI: 10.46793/KgJMat2004.617A

Abstract:

In this paper, we consider a class of anisotropic quasilinear elliptic equations of the type

(
|     ∑N
{   −      ∂ia (x, u, ∇u ) +  |u|s(x )− 1u =  f (x,u ),  in  Ω,
              i
|(      i=1
    u =  0                                             on ∂ Ω,

where f(x,s) is a Carathéodory function which satisfies some growth condition. We prove the existence of renormalized solutions for our Dirichlet problem, and some regularity results are concluded.

Keywords:

Anisotropic Sobolev spaces, variable exponents, quasilinear elliptic equations, renormalized solutions.

References:

[1]   S. Antontsev and M. Chipot, Anisotropic equations: uniqueness and existence results, Differential Integral Equations 21 (2008), 401–419.

[2]   M. Ben-Cheikh-Ali and O. Guibé, Nonlinear and non-coercive elliptic problems with integrable data, Adv. Math. Sci. Appl. 16 (2006), 275–297.

[3]   M. B. Benboubker, E. Azroul and A. Barbara, Quasilinear elliptic problems with nonstandard growths, Electron. J. Differential Equations (2011), 1–16.

[4]   M. B. Benboubker, H. Hjiaj and S. Ouaro, Entropy solutions to nonlinear elliptic anisotropic problem with variable exponent, J. Appl. Anal. Comput. 4 (2014), 245–270.

[5]   M. Bendahmane, M. Chrif and S. E. Manouni, An approximation result in generalized anisotripic sobolev spaces and application, J. Anal. Appl. 30 (2011), 341–353.

[6]   M. Bendahmane and P. Wittbold, Renormalized solutions for nonlinear elliptic equations with variable exponents and l1 data, Nonlinear Anal. 70 (2009), 567–583.

[7]   L. Boccardo, D. Giachetti, J. I. Dias and F. Murat, Existence and regularity of renormalized solutions for some elliptic problems involving derivations of nonlinear terms, J. Differential Equations 106 (1993), 215–237.

[8]   R. Di-Nardo and F. Feo, Existence and uniqueness for nonlinear anisotropic elliptic equations, Arch. Math. (Basel) 102 (2014), 141–153.

[9]   R. Di-Nardo, F. Feo and O. Guibé, Uniqueness result for nonlinear anisotropic elliptic equations, Adv. Differential Equations 18 (2013), 433–458.

[10]   L. Diening, P. Harjulehto, P. Hästö and M. Råžička, Lebesgue and Sobolev Spaces with Variable Exponents, Lecture Notes in Mathematics 2017, Springer, Heidelberg, Germany, 2011.

[11]   X. L. Fan and Q. H. Zhang, Existence for p(x)-Laplacien Dirichlet problem, Nonlinear Anal. 52 (2003), 1843–1852.

[12]   J. L. Lions, Quelques Methodes de Résolution des Problèmes aux Limites non Linéaires, Dunod et Gauthiers-Villars, Paris, 1969.

[13]   M. Mihailescu, P. Pucci and V. Radulescu, Eigenvalue problems for anisotropic quasilinear elliptic equations with variable exponent, J. Math. Anal. Appl. 340 (2008), 687–698.

[14]   K. Rajagopal and M. Råžička, Mathematical modelling of electro-rheological fluids, Contin. Mech. Thermodyn. 13 (2001), 59–78.

[15]   M. Råžička, Electrorheological Fluids: Modeling and Mathematical Theory, Lecture Notes in Mathematics 1748, Springer, Berlin, 2000.

[16]   J. F. Rodrigues, Obstacles Problems in Mathematical Physics, North-Holland, Amsterdam, 1991.

[17]   L. Zhao, P. Zhao and X. Xie, Existence and multiplicty of solutions for vivergence type elliptic equations, Electron. J. Differential Equations 43 (2009), 1–9.