Existence of Renormalized Solutions for Some Anisotropic Quasilinear Elliptic Equations
Download PDF
Authors: T. AHMEDATT, A. AHMED, H. HJIAJ AND A. TOUZANI
DOI: 10.46793/KgJMat2004.617A
Abstract:
In this paper, we consider a class of anisotropic quasilinear elliptic equations of the type
where f(x,s) is a Carathéodory function which satisfies some growth condition. We prove the existence of renormalized solutions for our Dirichlet problem, and some regularity results are concluded.
Keywords:
Anisotropic Sobolev spaces, variable exponents, quasilinear elliptic equations, renormalized solutions.
References:
[1] S. Antontsev and M. Chipot, Anisotropic equations: uniqueness and existence results, Differential Integral Equations 21 (2008), 401–419.
[2] M. Ben-Cheikh-Ali and O. Guibé, Nonlinear and non-coercive elliptic problems with integrable data, Adv. Math. Sci. Appl. 16 (2006), 275–297.
[3] M. B. Benboubker, E. Azroul and A. Barbara, Quasilinear elliptic problems with nonstandard growths, Electron. J. Differential Equations (2011), 1–16.
[4] M. B. Benboubker, H. Hjiaj and S. Ouaro, Entropy solutions to nonlinear elliptic anisotropic problem with variable exponent, J. Appl. Anal. Comput. 4 (2014), 245–270.
[5] M. Bendahmane, M. Chrif and S. E. Manouni, An approximation result in generalized anisotripic sobolev spaces and application, J. Anal. Appl. 30 (2011), 341–353.
[6] M. Bendahmane and P. Wittbold, Renormalized solutions for nonlinear elliptic equations with variable exponents and l1 data, Nonlinear Anal. 70 (2009), 567–583.
[7] L. Boccardo, D. Giachetti, J. I. Dias and F. Murat, Existence and regularity of renormalized solutions for some elliptic problems involving derivations of nonlinear terms, J. Differential Equations 106 (1993), 215–237.
[8] R. Di-Nardo and F. Feo, Existence and uniqueness for nonlinear anisotropic elliptic equations, Arch. Math. (Basel) 102 (2014), 141–153.
[9] R. Di-Nardo, F. Feo and O. Guibé, Uniqueness result for nonlinear anisotropic elliptic equations, Adv. Differential Equations 18 (2013), 433–458.
[10] L. Diening, P. Harjulehto, P. Hästö and M. Råžička, Lebesgue and Sobolev Spaces with Variable Exponents, Lecture Notes in Mathematics 2017, Springer, Heidelberg, Germany, 2011.
[11] X. L. Fan and Q. H. Zhang, Existence for p(x)-Laplacien Dirichlet problem, Nonlinear Anal. 52 (2003), 1843–1852.
[12] J. L. Lions, Quelques Methodes de Résolution des Problèmes aux Limites non Linéaires, Dunod et Gauthiers-Villars, Paris, 1969.
[13] M. Mihailescu, P. Pucci and V. Radulescu, Eigenvalue problems for anisotropic quasilinear elliptic equations with variable exponent, J. Math. Anal. Appl. 340 (2008), 687–698.
[14] K. Rajagopal and M. Råžička, Mathematical modelling of electro-rheological fluids, Contin. Mech. Thermodyn. 13 (2001), 59–78.
[15] M. Råžička, Electrorheological Fluids: Modeling and Mathematical Theory, Lecture Notes in Mathematics 1748, Springer, Berlin, 2000.
[16] J. F. Rodrigues, Obstacles Problems in Mathematical Physics, North-Holland, Amsterdam, 1991.
[17] L. Zhao, P. Zhao and X. Xie, Existence and multiplicty of solutions for vivergence type elliptic equations, Electron. J. Differential Equations 43 (2009), 1–9.