A Note on Probability Convergence Defined by Unbounded Modulus Function and $alphabeta$-Statistical Convergence
Download PDF
Authors: S. SOM
DOI: 10.46793/KgJMat2101.127S
Abstract:
In this paper we define f − αβ-statistical convergence of order γ in probability and f − αβ-strong p-Cesro summability of order γ in probability for a sequence of random variables under unbounded modulus function and examine the relation between these two concepts. We show by an example that this notion of f − αβ-statistical convergence of order γ in probability is stronger than αβ-statistical convergence of order γ in probability [?].
Keywords:
αβ-statistical convergence, f-statistical convergence, f − αβ-statistical convergence of order γ in probability, f − αβ-strong p-Cesro summability of order γ in probability.
References:
[1] A. Aizpuru, M. C. Listan-Garcia and F. Rambla-Barreno, Density by moduli and statistical convergence, Quaest. Math. 37 (2014), 525–530.
[2] H. Aktuglu, Korovkin type approximation theorems proved via αβ-statistical convergence, J. Comput. Appl. Math. 259 (2014), 174–181.
[3] S. Bhunia, P. Das and S. Pal, Restricting statistical convergence, Acta Math. Hungar. 134(1-2) (2012), 153–161.
[4] R. Colak, Statistical convergence of order α, Modern Methods in Analysis and its Applications (2010), 121–129.
[5] J. S Connor, The statistical and strong p-Cesaro convergence of sequences, Analysis 8(1-2) (1988), 47–63.
[6] P. Das, S. Ghosal and E. Savas, On generalization of certain summability methods using ideals, Appl. Math. Lett. 24(9) (2011), 1509–1514.
[7] P. Das, S. Ghosal and S. Som, Statistical convergence of order α in probability, Arab. J. Math. Sci. 21(2) (2015), 253–265.
[8] P. Das, S. Ghosal and S. Som, Different types of quasi weighted αβ-statistical convergence in probability, Filomat 31(5) (2017), 1463–1473.
[9] P. Das, S. Som, S. Ghosal and V. Karakaya, A notion of αβ-statistical convergence of order γ in probability, Kragujevac J. Math. 42(1) (2018), 51–67.
[10] H. Fast, Sur la convergence statistique, Colloq. Math. 2 (1951), 241–244.
[11] J. A. Fridy, On statistical convergence, Analysis 5 (1985), 301–313.
[12] J. A. Fridy and C. Orhan, Lacunary statistical convergence, Pacific. J. Math. 160 (1993), 43–51.
[13] S. Ghosal, Statistical convergence of a sequence of random variables and limit theorems, Appl. Math. 58(4) (2013), 423–437.
[14] S. Ghosal, Generalized weighted random convergence in probability, Appl. Math. Comput. 249 (2014), 502–509.
[15] H. Nakano, Concave modulars, J. Math. Soc. Japan 5 (1953), 29–49.
[16] T. Šalát, On statistically convergent sequences of real numbers, Math. Slovaca 30 (1980), 139–150.
[17] J. I. Schoenberg, The integrability of certain functions and related summability methods, Amer. Math. Monthly 66 (1959), 361–375.
[18] H. Sengul and M. Et, On lacunary statistical convergence of order α, Acta Math. Sci. Ser. B (Engl. Ed.) 34(2) (2014), 473–482.
[19] H. Steinhaus, Sur la convergence ordinaire et la convergence asymptotique, Colloq. Math. 2 (1951), 73–74.
[20] A. Zygmund, Trigonometric Series, Cambridge University Press, Cambridge, 1979.