Curvature Properties of Generalized pp-Wave Metrics.


Download PDF

Authors: A. ALI SHAIKH, T. Q. BINH AND H. KUNDU

DOI: 10.46793/KgJMat2102.237S

Abstract:

The main objective of the present paper is to investigate the curvature properties of generalized pp-wave metrics. It is shown that a generalized pp-wave spacetime is Ricci generalized pseudosymmetric, 2-quasi-Einstein and generalized quasi-Einstein in the sense of Chaki. As a special case it is shown that pp-wave spacetime is semisymmetric, semisymmetric due to conformal and projective curvature tensors, R-space by Venzi and satisfies the pseudosymmetric type condition P P = 13Q(S,P). Again we investigate the sufficient condition for which a generalized pp-wave spacetime turns into pp-wave spacetime, pure radiation spacetime, locally symmetric and recurrent. Finally, it is shown that the energy-momentum tensor of pp-wave spacetime is parallel if and only if it is cyclic parallel. Again the energy momentum tensor is Codazzi type if it is cyclic parallel but the converse is not true as shown by an example. Finally, we make a comparison between the curvature properties of the Robinson-Trautman metric and generalized pp-wave metric.



Keywords:

Einstein field equations, Brinkmann-wave metric, pp-wave metric, generalized pp-wave metric, Robinson-Trautman metric, Einstein manifold, quasi-Einstein manifold, 2-quasi-Einstein manifold, generalized quasi-Einstein manifold in the sense of Chaki, recurrent type curvature condition, pseudosymmetry type curvature condition.



References:

[1]   A. Adamów and R. Deszcz, On totally umbilical submanifolds of some class of Riemannian manifolds, Demonstr. Math. 16 (1983), 39–59.

[2]   K. Arslan, R. Deszcz, R. Ezentaş, M. Hotloś and C. Murathan, On generalized Robertson-Walker spacetimes satisfying some curvature condition, Turkish J. Math. 38(2) (2014), 353–373.

[3]   A. L. Besse, Einstein Manifolds, Springer-Verlag, Berlin, Heidelberg, 1987.

[4]   H. W. Brinkmann, Einstein spaces which are mapped conformally on each other, Math. Ann. 94 (1925), 119–145.

[5]   É. Cartan, Sur une classe remarquable d’espaces de Riemannian, Bull. Soc. Math. France 54 (1926), 214–264.

[6]   É. Cartan, Leçons sur la géométrie des espaces de Riemann, 2nd ed., Gauthier Villars, Paris, 1946.

[7]   M. C. Chaki, On pseudosymmetric manifolds, An. Ştiinţ. Univ. Al. I. Cuza Iaşi. Mat. (N.S.) 33(1) (1987), 53–58.

[8]   M. C. Chaki, On generalized quasi-Einstein manifolds, Publ. Math. Debrecen 58 (2001), 683–691.

[9]   B.-Y. Chen, Differential Geometry of Warped Product Manifolds and Submanifolds, World Scientific, New Jersey, 2017.

[10]   B.-Y. Chen, Classification of torqued vector fields and its applications to Ricci solitons, Kragujevac J. Math. 41 (2017), 239–250.

[11]   J. Chojnacka-Dulas, R. Deszcz, M. Głogowska and M. Prvanović, On warped products manifolds satisfying some curvature conditions, J. Geom. Phys. 74 (2013), 328–341.

[12]   F. Defever and R. Deszcz, On semi-Riemannian manifolds satisfying the condition R R = Q(S,R), Geometry and Topology of Submanifolds III, World Science, River Edge, New Jersey, 1991, 108–130.

[13]   F. Defever, R. Deszcz, M. Hotloś, M. Kucharski and Z. Şentürk, Generalisations of Robertson-Walker spaces, Ann. Univ. Sci. Budapest. Eötvös Sect. Math. 43 (2000), 13–24.

[14]   F. Defever, R. Deszcz, L. Verstraelen and L. Vrancken, On pseudosymmetric space-times, J. Math. Phys. 35(11) (1994), 5908–5921.

[15]   R. Deszcz, On pseudosymmetric spaces, Bull. Belg. Math. Soc. Ser. A 44 (1992), 1–34.

[16]   R. Deszcz, On Roter type manifolds, Book of abstract of V Conference on Geometry and Topology of Manifolds, April 27 - May 3, 2003, Krynica, Poland.

[17]   R. Deszcz, On some Akivis-Goldberg type metrics, Publ. Inst. Math. (Beograd) (N.S.) 74(88) (2003), 71–84.

[18]   R. Deszcz and M. Głogowska, Some examples of nonsemisymmetric Ricci-semisymmetric hypersurfaces, Colloq. Math. 94 (2002), 87–101.

[19]   R. Deszcz, M. Głogowska, M. Hotloś and Z. Şentürk, On certain quasi-Einstein semisymmetric hypersurfaces, Ann. Univ. Sci. Budapest Eötvös Sect. Math. 41 (1998), 151–164.

[20]   R. Deszcz, M. Głogowska, J. Jełowicki, M. Petrović-Torga˘s
    ev and G. Zafindratafa, On Riemann and Weyl compatible tensors, Publ. Inst. Math. (Beograd) (N.S.) 94(108) (2013), 111–124.

[21]   R. Deszcz, M. Głogowska, J. Jełowicki and G. Zafindratafa, Curvature properties of some class of warped product manifolds, Int. J. Geom. Methods Mod. Phys. 13 (2016), Paper ID 1550135, 36 pages.

[22]   R. Deszcz, M. Głogowska, M. Hotloś and K. Sawicz, A survey on generalized Einstein metric conditions, in: M. Plaue, A. D. Rendall, M. Scherfner (Eds.), Advances in Lorentzian Geometry: Proceedings of the Lorentzian Geometry Conference in Berlin, AMS/IP Studies in Advanced Mathematics, 49 (2011), 27-46.

[23]   R. Deszcz, S. Haesen and L. Verstraelen, Classification of space-times satisfying some pseudo-symmetry type conditions, Soochow Journal of Mathematics 30 (2004), 339–349.

[24]   R. Deszcz, S. Haesen and L. Verstraelen, On natural symmetries, in: A. Mihai, I. Mihai and R. Miron (Eds.), Topics in Differential Geometry, Chapter 6, Editura Academiei Române, Bucharest, 2008, 249–308.

[25]   R. Deszcz and M. Hotloś, On hypersurfaces with type number two in spaces of constant curvature, Ann. Univ. Sci. Budapest Eötvös Sect. Math. 46 (2003), 19–34.

[26]   R. Deszcz, M. Hotloś, J. Jełowicki, H. Kundu and A. A. Shaikh, Curvature properties of Gödel metric, Int J. Geom. Methods Mod. Phys. 11 (2014), Papaer ID 1450025, 20 pages.

[27]   R. Deszcz and M. Kucharski, On curvature properties of certain generalized Robertson-Walker spacetimes, Tsukuba J. Math. 23(1) (1999), 113–130.

[28]   R. Deszcz, L. Verstraelen and L. Vrancken, The symmetry of warped product space-times, Gen. Relativity Gravitation 23(6) (1991), 671–681.

[29]   J. Ehlers and W. Kundt, Exact solutions of the gravitational field equations, in: L. Witten (Ed.), Gravitation: An Introduction to Current Research, John Wiley, London, 1962.

[30]   A. Galaev and T. Leistner, Recent developments in pseudo-Riemannian holonomy theory, in: Handbook of Pseudo-Riemannian Geometry and Supersymmetry, Chapter 17, Publishing House, Zurich, 2010, 581–627.

[31]   A. Gray, Einstein-like manifolds which are not Einstein, Geom. Dedicata 7(3) (1978), 259–280.

[32]   K. Gödel, An example of a new type of cosmological solutions of Einstein’s field equations of gravitation, Rev. Modern Phys. 21(3) (1949), 447–450.

[33]   M. Głogowska, Semi-Riemannian manifolds whose Weyl tensor is a Kulkarni-Nomizu square, Publ. Inst. Math. (Beograd) (N.S.) 72(86) (2002), 95–106.

[34]   S. Haesen and L. Verstraelen, Properties of a scalar curvature invariant depending on two planes, Manuscripta Math. 122 (2007), 59–72.

[35]   S. Haesen and L. Verstraelen, Natural intrinsic geometrical symmetries, SIGMA 5 (2009), Paper ID 086, 14 pages.

[36]   Y. Ishii, On conharmonic transformations, Tensor (N. S.) 11 (1957), 73–80.

[37]   D. Kowalczyk, On the Reissner-Nordström-de Sitter type spacetimes, Tsukuba J. Math. 30(2) (2006), 363–381.

[38]   D. Lovelock and H. Rund, Tensors, Differential Forms and Variational Principles, Courier Dover Publications, New York, 1989.

[39]   C. A. Mantica and L. G. Molinari, Riemann compatible tensors, Colloq. Math. 128 (2012), 197–210.

[40]   C. A. Mantica and L. G. Molinari, Weyl compatible tensors, Int. J. Geom. Methods Mod. Phys. 11(08) (2014), Paper ID 1450070, 20 pages.

[41]   C. A. Mantica and Y. J. Suh, The closedness of some generalized curvature 2-forms on a Riemannian manifold I, Publ. Math. Debrecen 81(3-4) (2012), 313–326.

[42]   C. A. Mantica and Y. J. Suh, The closedness of some generalized curvature 2-forms on a Riemannian manifold II, Publ. Math. Debrecen 82(1) (2013), 163–182.

[43]   C. A. Mantica and Y. J. Suh, Recurrent conformal 2-forms on pseudo-Riemannian manifolds, Int. J. Geom. Methods Mod. Phys. 11(6) (2014), Paper ID 1450056, 29 pages.

[44]   C. A. Mantica, and Y. J. Suh, Pseudo-Z symmetric space-times with divergence-free Weyl tensor and pp-waves, Int. J. Geom. Methods Mod. Phys. 13(02) (2016), Paper ID 1650015, 34 pages.

[45]   E. M. Patterson, Some theorems on Ricci recurrent spaces, J. Lond. Math. Soc. 27 (1952), 287–295.

[46]   A. Peres, Some gravitational waves, Phys. Rev. Lett. 3 (1959), 571–572.

[47]   L. Radhakrishna and N. I. Singh, Pure radiation fields admitting nontrivial null symmetries, J. Math. Phys. 25 (1984), 2293–2300.

[48]   M. Prvanović, On weakly symmetric Riemannian manifolds, Publ. Math. Debrecen 46(1-2) (1995), 19–25.

[49]   H. S. Ruse, On simply harmonic spaces, J. Lond. Math. Soc. 21 (1946), 243–247.

[50]   H. S. Ruse, On simply harmonic ‘kappa spaces’ of four dimensions, Proc. Lond. Math. Soc. 50 (1949), 317–329.

[51]   H. S. Ruse, Three dimensional spaces of recurrent curvature, Proc. Lond. Math. Soc. 50 (1949), 438–446.

[52]   A. A. Shaikh, F. R. Al-Solamy and I. Roy, On the existence of a new class of semi-Riemannian manifolds, Math. Sci. 7(46) (2013), 1–13.

[53]   A. A. Shaikh, M. Ali and Z. Ahsan, Curvature properties of Robinson-Trautman metric, J. Geom. 109(38) (2018), 20 pages, DOI 10.1007/s00022-018-0443-1.

[54]   A. A. Shaikh, R. Deszcz, M. Hotloś, J. Jełowicki and H. Kundu, On pseudosymmetric manifolds, Publ. Math. Debrecen 86(3-4) (2015), 433–456.

[55]   A. A. Shaikh and H. Kundu, On equivalency of various geometric structures, J. Geom. 105 (2014), 139–165.

[56]   A. A. Shaikh and H. Kundu, On warped product generalized Roter type manifolds, Balkan J. Geom. Appl. 21(2) (2016), 82–95.

[57]   A. A. Shaikh and H. Kundu, On curvature properties of Som-Raychaudhuri spacetime, J. Geom. 108(2) (2016), 501–515.

[58]   A. A. Shaikh and H. Kundu, On warped product manifolds satisfying some pseudosymmetric type conditions, Differ. Geom. Dyn. Syst. 19 (2017), 119–135.

[59]   A. A. Shaikh and H. Kundu, On some curvature restricted geometric structures for projective curvature tensor, Int. J. Geom. Methods Mod. Phys. 15(09) (2018), Paper ID 1850157, 38 pages.

[60]   A. A. Shaikh and H. Kundu, On generlized Roter type manifolds, Kragujevac J. Math. 43(3) (2019), 471–493.

[61]   A. A. Shaikh, H. Kundu and Md. S. Ali, On warped product super generalized recurrent manifolds, An. Ştiinţ. Univ. Al. I. Cuza Iaşi Mat. (N. S.) 64(1) (2018), 85–99.

[62]   A. A. Shaikh, H. Kundu, M. Ali and Z. Ahsan, Curvature properties of a special type of pure radiation metrics, J. Geom. Phys. 136 (2019), 195–206.

[63]   A. A. Shaikh, H. Kundu and J. Sen, Curvature properties of Vaidya metric, Indian J. Math. 61(1) (2019), 41–59.

[64]   A. A. Shaikh and S. K. Jana, On weakly cyclic Ricci symmetric manifolds, Ann. Polon. Math. 89(3) (2006), 139–146.

[65]   A. A. Shaikh and A. Patra, On a generalized class of recurrent manifolds, Arch. Math. (Brno) 46 (2010), 71–78.

[66]   A. A. Shaikh and I. Roy, On weakly generalized recurrent manifolds, Ann. Univ. Sci. Budapest. Eötvös Sect. Math. 54 (2011), 35–45.

[67]   A. A. Shaikh, I. Roy and H. Kundu, On some generalized recurrent manifolds, Bull. Iranian Math. Soc. 43(5) (2017), 1209–1225.

[68]   A. A. Shaikh, I. Roy and H. Kundu, On the existence of a generalized class of recurrent manifolds, An. Ştiinţ. Univ. Al. I. Cuza Iaşi Mat. (N. S.) 64(2) (2018), 233–251.

[69]   R. Sippel and H. Goenner, Symmetry classes of pp-waves, Gen. Relativity Gravitation 18(12) (1986), 1229–1243.

[70]   M. M. Som and A. K. Raychaudhuri, Cylindrically symmetric charged dust distributions in rigid rotation in general relativity, Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 304 (1968), 81–86.

[71]   H. Stephani, D. Kramer, M. Maccallum, C. Hoenselaers and E. Herlt, Exact Solutions of Einstein’s Field Equations, 2nd Ed., Cambridge University Press, UK, Cambridge, 2009.

[72]   Y. J. Suh, J-H. Kwon and Y. S. Pyo, On semi-Riemannian manifolds satisfying the second Bianchi identity, J. Korean Math. Soc. 40(1) (2003), 129–167.

[73]   Z. I. Szabó, Structure theorems on Riemannian spaces satisfying R(X,Y ) R = 0, I. The local version, J. Differential Geom. 17 (1982), 531–582.

[74]   Z. I. Szabó, Classification and construction of complete hypersurfaces satisfying R(X,Y )R = 0, Acta Sci. Math. 47 (1984), 321–348.

[75]   Z. I. Szabó, Structure theorems on Riemannian spaces satisfying R(X,Y ) R = 0, II. The global version, Geom. Dedicata 19 (1985), 65–108.

[76]   L. Támassy and T. Q. Binh, On weakly symmetric and weakly projective symmetric Riemannian manifolds, Coll. Math. Soc. J. Bolyai 50 (1989), 663–670.

[77]   L. Tamássy and T. Q. Binh, On weak symmetries of Einstein and Sasakian manifolds, Tensor (N. S.) 53 (1993), 140–148.

[78]   L. Verstraelen, Comments on the pseudo-symmetry in the sense of Ryszard Deszcz, in: Dillen et al. (Eds.), Geometry and Topology of Submanifolds, VI, World Science, Singapore, 1994, 119–209.

[79]   L. Verstraelen, Natural extrinsic geometrical symmetries - an introduction, in: Recent Advances in the Geometry of Submanifolds Dedicated to the Memory of Franki Dillen (1963-2013), Contemporary Mathematics 674, AMS, New York, 2016, 5–16.

[80]   L. Verstraelen, Foreword, in: B.-Y. Chen, Differential Geometry of Warped Product Manifolds and Submanifolds, World Scientific, Singapore, 2017, vii–xxi.

[81]   P. Venzi, Una generalizzazione degli spazi ricorrenti, Rev. Roumaine Math. Pures Appl. 30 (1985), 295–305.

[82]   A. G. Walker, On Ruse’s spaces of recurrent curvature, Proc. Lond. Math. Soc. 52 (1950), 36–64.

[83]   K. Yano and M. Kon, Structures on Manifolds, World Science Publication, Singapore, 1989.