On the Non-Negative Radial Solutions of the Two Dimensional Bratu Equation


Download PDF

Authors: M. K. C. NDJATCHI, P. VYRIDIS, J. MARTíNEZ AND J. J. ROSALES

DOI: 10.46793/KgJMat2102.275N

Abstract:

In this paper, we study the boundary value problem on the unit circle for the Bratu’s equation depending on the real parameter μ. From the parameter estimate, the existence of non-negative solution is set. A numerical method is suggested to justify the theoretical result. It is a combination of the adaptation of finite difference and Gauss-Seidel method allowing us to obtain a good approximation of μc, with respect to the exact theoretical method μc = λ = 5.7831859629467.



Keywords:

Non-linear eigenvalue problem, finite difference method, Gauss-Seidel method.



References:

[1]   B. Bathia, Numerical solution of Bratu-type equation by the variational iteration method, Hacet. J. Math. Stat. 39(1) (2010), 23–29.

[2]   J. P. Boyd, An analytical and numerical study of the two-dimensional Bratu equation, J. Sci. Comput. 1(2) (1986), 183–206.

[3]   J. P. Boyd, Chebyshev polynomial expansions for simultaneous approximation of two branches of a function with application to the one-dimensional Bratu equation, Appl. Math. Comput. 142 (2003), 189–200.

[4]   R. L. Burden and J. D. Faires, Numerical Analysis, 9th Edition, Brooks/Cole CENGAGE Learning, Boston, 2011.

[5]   H. Caglar, N. Caglar, M. Ozer, A. Valaristos, A. N. Miliou and A. N. Anagnostopoulos, Dynamics of the solution of Bratu’s equation, Nonlinear Anal. 71 (2009), 672–678.

[6]   E. Caglioti, P. L. Lions, C. Marchioro and M. Pulvirenti, A special class of stationary flows for two-dimensional Euler equations: a statistical mechanics description, Commun. Math. Phys. 143 (1992), 501–525.

[7]   D. Chae and O. Imanuvilov, Existence of non-topological multivortex solutions in the relativistic self-dual Chern-Simons theory, Commun. Math. Phys. 215 (2000), 119–142.

[8]   S. Chanillo and M. Kiessling, Symmetry of solutions of some nonlinear problems in statistical mechanics and in geometry, Commun. Math. Phys. 160 (1994), 217–238.

[9]   D. A. Frank-Kamenetski, Diffusion and Heat Exchange in Chemical Kinetics, Princeton University Press, Princeton, New Jersey, 1955.

[10]   B. Gidas, W. M. Ni and L. Niremberg, Symmetry and related properties via the maximum principle, Comm. Math. Physics 69 (1979), 209–243.

[11]   B. Ghazanfari and A. Sepahvandzadeh, A domain decomposition method for solving fractional Bratu-type equations, J. Math. Comput. Sci. 8 (2014), 236–244.

[12]   L. Jin, Application of modified variational iteration method to the Bratu-type problems, International Journal of Contemporary Mathematical Sciences 5(4) (2010), 153–158.

[13]   J. H. He, An elementary introduction of recently developed asymptotic methods and nanomechanics in textile engineering, Internat. J. Modern Phys. B 22(21) (2008), 3487–3578.

[14]   J. H. He, Variational iteration method for Bratu-like equation arising in electrospinning, Carbohydrate Polymers 105 (2014), 229–230.

[15]   J. Kazdan and F. Warner, Existence and conformal deformation of metrics with prescribed Gaussian and scalar curvatures, Ann. Math. 101 (1975), 317–331.

[16]   E. Kreyszig, Advanced Engineering Mathematics, 10th Edition, John Wiley and Sons, Inc, Boston, USA, 2011.

[17]   J. D. Logan, An Introduction to Nonlinear Partial Differential Equations, 2nd Edition, John Wiley and Sons, Inc. Hoboken, New Jersey, 2008.

[18]   S. A. Odejide and Y. A. S. Aregbesola, A note on two dimensional Bratu problem, Kragujevac J. Math. 29 (2006), 49–56.

[19]   T. Semba and T. Suzuki, Structures of the solutions set from stationary system of chemotaxis, Adv. Math. Sci. Appl. 10 (2000), 191–224.

[20]   M. A. Soliman, Rational approximation for the one-dimensional Bratu equation, IJET-IJENS 13(05) (2013), 44–61.

[21]   M. Struwe and G. Tarantello, On multivortex solutions in Chern-Simons gauge theory, Bollettino della Unione Matematica Italiana 8(1-B) (1998), 109–121.