The Maximum Norm Analysis of Schwarz Method for Elliptic Quasi-Variational Inequalities
Download PDF
Authors: M. BEGGAS AND M. HAIOUR
DOI: 10.46793/KgJMat2104.635B
Abstract:
In this paper, we present a maximum norm analysis of an overlapping Schwartz method on non matching grids for a quasi-variational inequality, where the obstacle and the second member depend on the solution. Our result improves and generalizes some previous results.
Keywords:
Schwarz method, quasi-variational inequalities, weakly subsequenti ally continuous, L∞-error estimates.
References:
[1] M. Boulbrachene, Optimal L∞-error estimate for variational inequalities with nonlinear source termms, Appl. Math. Lett. 15 (2002), 1013–1017.
[2] M. Boulbrachene and S. Saadi, Maximum norm analysis of an over lapping non matching grids method for the obstacl problem, Adv. Difference Equ. 2006 (2006), Paper ID 085807.
[3] M. Haiour and S. Boulaaras, Overlapping domain decomposition method for elliptic quasi-varational inqualities related to impulse control problem with mixed boundary conditions, Pro. Math. Sci. 121(4) (2011), 481–493.
[4] M. Haiour and E. Hadidi, Uniform convergence of Schwarz method for varational inqualities for noncoercive variationam inequalities, International Journal of Contemporary Mathematical Sciences 4(28) (2009), 1423–1434.
[5] J. Hannouzet and P. Joly, Convergence uniform des itérés définissant la solution d’une inéquation quasi-variantionnelle, C. R. Acad. Sci. Paris, Serie A 286 (1978).
[6] P. L. Lions and P. Perthame, Une remarque sur les opérateurs nonlinéaire intervenant dand les inéquations quasi-variational, Ann. Fac. Sci. Toulouse Math. 5 (1983), 259–263.
[7] P. L. Lions, On the Schwarz alternating method I, in: R. Gowinski, G. H. Golub, G. A. Meurant and J. Péeriaux (Eds.) Proceedings of First International Symposium on Domain Decomposition Methods for Partial Differential Equations, SIAM, Philadelphia, 1988, 1–42.
[8] P. L. Lions, On the Schwarz alternating method II, stochastic interpretation and order proprieties, domain decomposition methods, in: Proceedings of Second International Symposium on Domain Decomposition Methods for Partial Differential Equations, SIAM, Philadelphia, 1989, 47–70.
[9] P. A. Raviart, J. M. Thomas, Introduction á lAnalyse Numérique des Équations aux Dérivées Partielles, 3eme tirage, Masson, Paris, New York, Barcelone, 1992.
[10] H. Mechri and S. Saadi, Overlapping nonmateching grid method for the ergodic control quasi-varational inequalities, American Journal of Computational Mathematics 3 (2013), 27–31.
[11] S. Saadi and A. Mehri, L∞-error estimate of Schwarz algorithm for noncoercive variational inequalities, Appl. Math. Appl. 5(3) (2014), 572–580.
[12] J. Zeng and S. Zhou, Schwarz altgorithm of the solution of variational inequalities with nonlinear source terms, Appl. Math. Comput. (1988), 23–35.