Well-Posedness and Asymptotic Stability of a Non-Linear Porous System with a Delay Term

Authors: H. MAKHELOUFI, N. MEZOUAR AND M. BAHLIL
DOI: 10.46793/KgJMat2105.751E
Abstract:
We prove that there is no circulant Hadamard matrix H with first row [h1,…,hn] of order n > 4, under some linear conditions on the hi’s. All these conditions hold in the known case n = 4, so that our results can be thought as characterizations of properties that only hold when n = 4. Our first conditions imply that some eigenvalue λ of H is a sum of

Keywords:
Circulant matrices, Hadamard matrices, eigenvalues, unit circle, cyclotomic fields.
References:
[1] P. Borwein and M. J. Mossinghoff, Wieferich pairs and Barker sequences II, LMS J. Comput. Math. 17(1) (2014), 24–32.
[2] R. A. Brualdi, A note on multipliers of difference sets, Journal of Research of the National Bureau of Standards, Section B 69 (1965), 87–89.
[3] P. J. Davis, Circulant Matrices, 2nd ed., AMS Chelsea Publishing, New York, 1994.
[4] R. Euler, L. H. Gallardo and O. Rahavandrainy, Sufficient conditions for a conjecture of Ryser about Hadamard Circulant matrices, Linear Algebra Appl. 437 (2012), 2877–2886.
[5] R. Euler, L. H. Gallardo and O. Rahavandrainy, Combinatorial properties of circulant Hadamard matrices, in: C. M. da Fonseca, D. Van Huynh, S. Kirkland and V. K. Tuan (Eds.), A panorama of Mathematics: Pure and Applied, Contemporary Mathematics (Book 658), American Mathematical Society, Providence, RI, 2016, 9–19.
[6] A. Gsiorowski, G. Rajchel and K. Zyczkowski, Robust
Hadamard matrices, unistochastic rays in Birkhoff polytope and
equi-entangled bases in composite spaces, Math. Comput. Sci. 12(4)
(2018), 473–490.
[7] A. Hedayat and W. D. Wallis, Hadamard matrices and their applications, Ann. Statist. 6(6) (1978), 1184–1238.
[8] J. Jedwab and S. Lloyd, A note on the nonexistence of Barker sequences, Des. Codes Cryptogr. 2(1) (1992), 93–97.
[9] L. Gallardo, On a special case of a conjecture of Ryser about Hadamard circulant matrices, Appl. Math. E-Notes 12 (2012), 182–188.
[10] L. H. Gallardo, New duality operator for complex circulant matrices and a conjecture of Ryser, Electron. J. Combin. 23(1) (2016), Paper ID 1.59, 10 pages.
[11] M. Matolcsi, A Walsh-Fourier approach to the circulant Hadamard conjecture, in: Algebraic Design Theory and Hadamard Matrices, Springer Proc. Math. Stat. 133, Springer, Cham, 2015, 201–208.
[12] D. B. Meisner, On a construction of regular Hadamard matrices, Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Serie IX. Matematica e Applicazioni 3(4) (1992), 233–240.
[13] Y. Y. Ng, Cyclic Menon difference sets, circulant hadamard matrices and Barker sequences, Master Thesis, The University of Hong Kong, December 1993, 36 pages.
[14] M. J. Mossinghoff, Wieferich prime pairs, Barker sequences, and circulant Hadamard matrices, 2013, [http://www.cecm.sfu.ca/ mjm/WieferichBarker/].
[15] K. H. Leung and B. Schmidt, New restrictions on possible orders of circulant Hadamard matrices, Des. Codes Cryptogr. 64 (2012), 143–151.
[16] H. J. Ryser, Combinatorial Mathematics, The Carus Mathematical Monographs 14, The Mathematical Association of America, John Wiley and Sons, Inc., New York, 1963.
[17] J.-P. Serre, Finite Groups: An Introduction, Surveys of Modern Mathematics 10, International Press, Somerville, MA, Higher Education Press, Beijing, 2016.
[18] R. J. Turyn, Character sums and difference sets, Pac. J. Math. 15 (1965), 319–346.