Pseudo-BCK Algebras Derived from Directoids


Download PDF

Authors: A. REZAEI

DOI: 10.46793/KgJMat2201.125R

Abstract:

The aim of this paper is to derive pseudo-BCK algebras from directoids and vice versa. We generalize some results proved by Ivan Chajda et al. in the case of BCK-algebras. We assign to an arbitrary pseudo-BCK algebra a semilattice-like structure and observe that this is the point where directoids are different from the semilattice-like structures. Finally, the relation between commutative deductive systems and derive directoids from a bounded pseudo-BCK(pDN) algebras and a characterization of commutative deductive systems of a bounded pseudo-BCK(pDN) algebra in terms of directoids is discussed.



Keywords:

(Commutative) pseudo-BCK algebra, pseudo-BCK lattice, (commutative) deductive system, directoid, semilattice.



References:

[1]   R. A. Borzooei, A. B. Saeid, A. Rezaei, A. Radfar and R. Ameri, On pseudo-BE algebras, Discuss. Math. Gen. Algebra Appl. 33 (2013), 95–108.

[2]   R. A. Borzooei, A. B. Saeid, A. Rezaei, A. Radfar and R. Ameri, Distributive pseudo-BE algebras, Fasc. Math. 54 (2015), 21–39.

[3]   I. Chajda and J. K¨uhr, Algebraic structures derived from BCK-algebras, Miskolc Math. Notes 8(1) (2007), 11–21.

[4]   I. Chajda and H. L¨anger, An ordered structure of pseudo-BCI algebras, Math. Bohem. 141(1) (2016), 91–98.

[5]   L. C. Ciungu, Commutative pseudo-BE algebras, Iran. J. Fuzzy Syst. 13(1) (2016), 131–144.

[6]   L. C. Ciungu, Commutative deductive systems of pseudo BCK-algebras, Soft Computing 22(4) (2018), 1189–1201.

[7]   L. C. Ciungu, Non-Commutative Multiple-Valued Logic Algebras, Springer, Cham, Heidelberg, New York, Dordrecht, London, 2014.

[8]   L. C. Ciungu, On pseudo-BCK algebras with pseudo-double negation, An. Univ. Craiova Ser. Mat. Inform. 37(1) (2010), 19–26.

[9]   W. A. Dudek and Y. B. Jun, Pseudo-BCI algebras, East Asian Math. J. 24 (2008), 187–190.

[10]   G. Georgescu and A. Iorgulescu, Pseudo-MV algebras, Multiple-Valued Logic 9 (2001), 95–135.

[11]   G. Georgescu and A. Iorgulescu, Pseudo-BL algebras: a non-commutative extension of BL-algebras, Fifth International Conference FSTA 2000, Slovakia, February, 2000, 90–92.

[12]   G. Georgescu and A. Iorgulescu, Pseudo-BCK Algebras: an Extension of BCK-Algebras, DMTCS01: Combinatorics, Computability and Logic, Springer, London, 2001, 97–114.

[13]   G. Georgescu, L. Leustean and V. Preoteasa, Pseudo-hoops, J. Mult.-Valued Logic Soft Comput. 11 (2005), 153–184.

[14]   R. Halaš and J. Ku¨hr, Deductive systems and annihilators of pseudo-BCK algebras, Italian Journal of Pure and Applied Mathematics 25 (2009), 83–94.

[15]   Y. Imai and K. Is´e ki, On axiom systems of propositional calculi, Proc. Japan Acad. 42 (1966), 19–22.

[16]   A. Iorgulescu, Classes of pseudo-BCK algebras - Part I, J. Mult.-Valued Logic Soft Comput. 12 (2006), 71–130.

[17]   A. Iorgulescu, Algebras of Logic as BCK-Algebras, Academy of Economic Studies Press, Bucharest, 2008.

[18]   A. Iorgulescu, Implicative vs. Groups and Generalizations, Matrix Rom, Bucharest, 2018.

[19]   K. Is´e ki, An algebra related with a propositional calculus, Proc. Japan Acad. 42 (1966), 26–29.

[20]   J. K¨uhr, Pseudo-BCK semilattices, Demonstr. Math. 40 (2007), 495–516.

[21]   J. K¨uhr, Pseudo-BCK Algebras and Related Structures, Univerzita Palackeho v Olomouci, Olomouci, 2007.

[22]   J. K¨uhr, Commutative pseudo-BCK algebras, Southeast Asian Bull. Math. 33 (2009), 451–475.

[23]   J. Meng and Y. B. Jun, BCK-Algebras, Kyung Moon Sa Co., Seoul, Korea, 1994.

[24]   J. Rachůnek, A non commutative generalization of MV-algebras, Czechoslovak Math. J. 52(2) (2002), 255–273.

[25]   A. Rezaei, A new trend to pseudo-BCK algebras, in: Proceeding of 6th Iranian Joint Congress on Fuzzy and Intelligent Systems (CFIS), Kerman, Iran, 2018, 117–119.

[26]   A. Rezaei, A. B. Saeid, A. Radfar and R. A. Borzooei, Congruence relations on pseudo-BE algebras, An. Univ. Craiova Ser. Mat. Inform. 41 (2014), 166–176.

[27]   A. Rezaei, L. C. Ciungu and A. B. Saeid, States on pseudo-BE algebras, J. Mult.-Valued Logic Soft Comput. 28 (2017), 591–618.

[28]   A. Rezaei, A. B. Saeid and K. Y. S. Saber, On pseudo-CI algebras, Soft Computing 23(13) (2019), 4643–4654.

[29]   A. Rezaei, A. B. Saeid and A. Walendziak, Some results on pseudo-Q algebras, Ann. Univ. Paedagog. Crac. Stud. Math. 16 (2017), 61–72.

[30]   A. Rezaei, A. Walendziak and A. B. Saeid, Some remarks on commutative and pointed pseudo-CI algebras, Mathematica Aeterna 8(4) (2018), 269–277.

[31]   S. Tanaka, A new class of algebras, Mathematical Seminar Notes 3 (1975), 37–43.

[32]   A. Walendziak, Pseudo-BCH algebras, Discuss. Math. Gen. Algebra Appl. 35 (2015), 5–19.

[33]   A. Walendziak, On branchwise commutative pseudo-BCH algebras, Ann. Univ. Mariae Curie-Sklodowska Sect. A LXXI(2) (2017), 79–89.