Existence Theorems for a Coupled System of Nonlinear Multi- Term Fractional Differential Equations with Nonlocal Boundary Conditions


Download PDF

Authors: B. AHMAD, A. ALSAEDI, N. ALGHAMDI AND S. K. NTOUYAS

DOI: 10.46793/KgJMat2202.317A

Abstract:

We discuss the existence and uniqueness of solutions for a coupled system of nonlinear multi-term fractional differential equations complemented with coupled nonlocal boundary conditions by applying the methods of modern functional analysis. An example illustrating the uniqueness result is presented. Some interesting observations are also described.



Keywords:

Coupled system, multi-term fractional differential equations, Caputo fractional derivative, nonlocal boundary conditions, existence.



References:

[1]   M. S. Abdo and S. K. Panchal, Fractional integro-differential equations involving ζ-Hilfer fractional derivative, Adv. Appl. Math. Mech. 11 (2019), 338–359.

[2]   R. P. Agarwal, B. Ahmad and A. Alsaedi, Fractional-order differential equations with anti-periodic boundary conditions: A survey, Bound. Value Probl. (2017), Paper ID 173, 27 pages.

[3]   B. Ahmad, A. Alsaedi, D. Hnaien and M. Kirane, On a semi-linear system of nonlocal time and space reaction diffusion equations with exponential nonlinearities, J. Integral Equations Appl. 30 (2018), 17–40.

[4]   B. Ahmad and R. Luca, Existence of solutions for a system of fractional differential equations with coupled nonlocal boundary conditions, Fract. Calc. Appl. Anal. 21 (2018), 423–441.

[5]   B. Ahmad, M. M. Matar and O. M. El-Salmy, Existence of solutions and Ulam stability for Caputo type sequential fractional differential equations of order α (2, 3), International Journal of Nonlinear Analysis and Applications 15 (2017), 86–101.

[6]   B. Ahmad, S. K. Ntouyas and A. Alsaedi, On a coupled system of fractional differential equations with coupled nonlocal and integral boundary conditions, Chaos Solitons Fractals 83 (2016), 234–241.

[7]   B. Ahmad and S. K. Ntouyas, Existence results for a coupled system of Caputo type sequential fractional differential equations with nonlocal integral boundary conditions, Appl. Math. Comput. 266 (2015), 615–622.

[8]   A. Alsaedi, N. Alghamdi, R. P. Agarwal, S. K. Ntouyas and B. Ahmad, Multi-term fractional-order boundary-value problems with nonlocal integral boundary conditions, Electron. J. Differential Equations 87 (2018), 16 pages.

[9]   A. A. M. Arafa, S. Z. Rida and M. Khalil, Fractional modeling dynamics of HIV and CD4+ T-cells during primary infection, Nonlinear Biomedical Physics 6(1) (2012), 7 pages.

[10]   A. Carvalho and C. M. A. Pinto, A delay fractional order model for the co-infection of malaria and HIV/AIDS, Int. J. Dyn. Control 5 (2017), 168–186.

[11]   A. Granas and J. Dugundji, Fixed Point Theory, Springer-Verlag, New York, 2003.

[12]   J. Henderson, R. Luca and A. Tudorache, On a system of fractional differential equations with coupled integral boundary conditions, Fract. Calc. Appl. Anal. 18 (2015), 361–386.

[13]   B. Henry and S. Wearne, Existence of Turing instabilities in a two-species fractional reaction-diffusion system, SIAM J. Appl. Math. 62 (2002), 870–887.

[14]   R. Herrmann, Fractional Calculus: An Introduction for Physicists, World Scientific, Singapore, 2011.

[15]   R. Hilfer, Threefold introduction to fractional derivatives, in: R. Klages, G. Radons and I. M. Sokolov (Eds.), Anomalous Transport: Foundations and Applications, Wiley-VCH, Weinheim, 2008, 17–74.

[16]   M. Javidi and B. Ahmad, Dynamic analysis of time fractional order phytoplankton-toxic phytoplankton-zooplankton system, Ecological Modelling 318 (2015), 8–18.

[17]   A. A. Kilbas, H. M. Srivastava and J. J. Trujillo, Theory and Applications of Fractional Differential Equations, North-Holland Mathematics Studies 204, Elsevier Science B.V., Amsterdam, 2006.

[18]   C.-G. Li, M. Kostić and M. Li, Abstract multi-term fractional differential equations, Kragujevac J. Math. 38 (2014), 51–71.

[19]   Y. Liu, Boundary value problems of singular multi-term fractional differential equations with impulse effects, Math. Nachr. 289 (2016), 1526–1547.

[20]   F. Mainardi, Some basic problems in continuum and statistical mechanics, in: A. Carpinteri, F. Mainardi (Eds.), Fractals and Fractional Calculus in Continuum Mechanics, Springer, Berlin, 1997, 291–348.

[21]   F. Mainardi, Fractional Calculus and Waves in Linear Viscoelasticy, World Scientific, Singapore, 2010.

[22]   R. L. Magin, Fractional calculus in bioengineering, Critical Reviews in Biomedical Engineering 32 (1) (2004), 1–104.

[23]   T. Matsuzaki and M. Nakagawa, A chaos neuron model with fractional differential equation, Journal of the Physical Society of Japan 72 (2003), 2678–2684.

[24]    R. Schumer, D. Benson, M. M. Meerschaert and S. W. Wheatcraft, Eulerian derivative of the fractional advection-dispersion equation, Journal of Contaminant Hydrology 48 (2001), 69–88.

[25]   S. Stanek, Periodic problem for two-term fractional differential equations, Fract. Calc. Appl. Anal. 20 (2017), 662–678.

[26]   C. Thaiprayoon, S. K. Ntouyas and J. Tariboon, On the nonlocal Katugampola fractional integral conditions for fractional Langevin equation, Adv. Difference Equ. 2015 (2015), Paper ID 374, 16 pages.

[27]   P. J. Torvik and R. L. Bagley, On the appearance of the fractional derivative in the behavior of real materials, J. Appl. Mech. 51 (1984), 294–298.

[28]   G. Wang, B. Ahmad, L. Zhang and R. P. Agarwal, Nonlinear fractional integro-differential equations on unbounded domains in a Banach space, J. Comput. Appl. Math. 249 (2013), 51–56.

[29]   J. R. Wang and Y. Zhang, Analysis of fractional order differential coupled systems, Math. Method. Appl. Sci. 38 (2015), 3322–3338.

[30]   J. R. Wang, Y. Zhou and M. Feckan, On the nonlocal Cauchy problem for semilinear fractional order evolution equations, Central European Journal of Mathematics 12 (2014), 911-922.

[31]   F. Zhang, G. Chen, C. Li and J. Kurths, Chaos synchronization in fractional differential systems, Philos. Trans. Roy. Soc. A 371 (2013), 26 pages.

[32]   Y. Zhou, Basic Theory of Fractional Differential Equations, World Scientific Publishing Co. Pte. Ltd., Hackensack, New Jersey, 2014.