Non-Conformable Fractional Laplace Transform
Download PDF
Authors: F. MARTíNEZ, P. O. MOHAMMED AND J. E. N. VALDéS
DOI: 10.46793/KgJMat2203.341M
Abstract:
In this paper we present an extension of Fractional Laplace Transform in the framework of the non-conformable local fractional derivative. Its main properties are studied and it is applied to the resolution of fractional differential equations.
Keywords:
Laplace fractional transform, fractional calculus.
References:
[1] T. Abdeljawad, On conformable fractional calculus, J. Comput. Appl. Math. 279 (2015), 57–66.
[2] P. Agarwal, S. S. Dragomir, M. Jleli and B. Samet (Eds.), Advances in Mathematical Inequalities and Applications, Birkhuser, Basel, 2018.
[3] P. Agarwal, S. Deniz S. Jain, A. A. Alderremy and S. Aly, A new analysis of a partial differential equation arising in biology and population genetics via semi analytical techniques, Phys. A, DOI 10.1016/j.physa.2019.122769.
[4] A. A. El-Sayed and P. Agarwal, Numerical solution of multiterm variableorder fractional differential equations via shifted Legendre polynomials, Math. Methods Appl. Sci. 42 (2019), 3978–3991.
[5] P. M. Guzman, G. Langton, L. M. Lugo, J. Medina and J. E. Nápoles Valdés, A new definition of a fractional derivative of local type, J. Math. Anal. 9(2) (2018), 88–98.
[6] C. Hetal, The fractional Laplace transform solution for fractional differential equation of the oscillator in the presence of an external forces, International Journal of Advanced Science and Technology 5(2) (2018), 6–11.
[7] S. Jain and P. Agarwal, On new applications of fractional calculus, Bol. Soc. Parana. Mat. (3) 37(3) (2019), 113–118.
[8] R. Khalil, M. Al Horani, A. Yousef and M. Sababheh, A new definition of fractional derivative, J. Comput. Appl. Math. 264 (2014), 65–70.
[9] L. Kexue and P. Jigen, Laplace transform and fractional differential equations, Appl. Math. Lett. 24 (2011), 2019–2023.
[10] N. A. Khan, O. A. Razzaq and M. Ayaz, Some properties and applications of conformable fractional Laplace transform (CFLT), J. Fract. Calc. Appl. 9(1) (2018), 72–81.
[11] S. D. Lin and C. H. Lu, Laplace transform for solving some families of fractional differential equations and its applications, Adv. Difference Equ. 2013 (2013), Paper ID 137, 9 pages.
[12] S. Liang, R. Wu and L. Chen, Laplace transform of fractional order differential equations, Electron. J. Differential Equations 2015(139) (2015), 1–15.
[13] R. R. Nigmatullina and P. Agarwal, Direct evaluation of the desired correlations: Verication on real data, Phys. A 534 (2019), Paper ID 121558.
[14] J. E. Nápoles, P. M. Guzman and L. M. Lugo, Some new results on non conformable fractional calculus, Adv. Dyn. Syst. Appl. 13(2) (2018), 167–175.
[15] J. E. Nápoles, P. M. Guzman and L. M. Lugo, On the stability of solutions of fractional non conformable differential equations, Stud. Univ. Babes-Bolyai Math. (to appear).
[16] M. Pospísil and L. P. Skripková, Sturm’s theorems for conformable fractional differential equations, Math. Commun. 21 (2016), 273–281.
[17] M. Ruzhansky, Y. Je Cho, P. Agarwal and I. Area, Advances in Real and Complex Analysis with Applications, Springer, Singapore, 2017.
[18] S. Rekhviashvili, A. Pskhu, P. Agarwal and S. Jain, Application of the fractional oscillator model to describe damped vibrations, Turkish Journal of Physics 43(3) (2019), 236–242.
[19] F. S. Silva, D. M. Moreira and M. A. Moret, Conformable Laplace transform of fractional differential equations, Axioms 7(3) (2018), 55.
[20] S. Salahshour, A. Ahmadian, N. Senu, D. Baleanu and P. Agarwal, On analytical solutions of the fractional differential equation with uncertainty: application to the Basset problem, Entropy 17(2) (2015), 885–902.
[21] X. Zhang, P. Agarwal, Z. Liu and H. Peng, The general solution for impulsive differential equations with Riemann-Liouville fractional-order q ∈ (1, 2), Open Math. 13(1) (2015), 908-930.