Maps Preserving the Spectrum of Skew Lie Product of Operators
Download PDF
Authors: E. ALZEDANI AND M. MABROUK
DOI: 10.46793/KgJMat2204.525A
Abstract:
Keywords:
Nonlinear preservers, spectrum, Skew Lie product.
References:
[1] Z. Abdelali, Maps preserving the spectrum of polynomial products of matrices, J. Math. Anal. Appl. 480 (2019), Paper ID 123392.
[2] Z. Abdelali, A. Bourhim and M. Mabrouk, Preservers of spectrum and local spectrum on skew Lie products of matrices, Contemp. Math. (to appear).
[3] L. Baribeau and T. Ransford, Non-linear spectrum-preserving maps, Bull. London Math. Soc. 32 (2000), 8–14.
[4] A. Bourhim and J. Mashreghi, Maps preserving the local spectrum of triple product of operators, Linear Multilinear Algebra (2014), 1–9.
[5] A. Bourhim and J. Mashreghi, Maps preserving the local spectrum of product of operators, Glasg. Math. J. 57 (2015), 709–718.
[6] A. Bourhim and J. Mashreghi, A survey on preservers of spectra and local spectra, in: CRM Proceedings and Lecture Notes: Invariant Subspaces of the Shift Operator, R. Amer. Math. Soc., Providence, 2015.
[7] A. Bourhim, J. Mashreghi and A. Stepanyan, Maps between Banach algebras preserving the spectrum, Arch. Math. 107 (2016), 609–621.
[8] J.-T. Chan, C.-K. Li and N.-S. Sze, Mappings preserving spectra of products of matrices, Proc. Amer. Math. Soc. 135 (2007), 977–986.
[9] C. Costara, Non-surjective spectral isometries on matrix spaces, Complex Anal. Oper. Theory 12 (2018), 859–868.
[10] C. Costara and D. Repovš, Spectral isometries onto algebras having a separating family of finite-dimensional irreducible representations, J. Math. Anal. Appl. 365 (2010), 605–608.
[11] J. Cui and P. Choonkil, Maps preserving strong skew Lie product on factor von Neumann algebras, Acta Math. Sci. 32 (2012), 531–538.
[12] J.-L. Cui and C.-K. Li, Maps preserving peripheral spectrum of Jordan products of operators, Oper. Matrices 6 (2012), 129–146.
[13] O. Hatori, T. Miura and H. Takagi, Unital and multiplicatively spectrum-preserving surjections between semi-simple commutative Banach algebras are linear and multiplicative, J. Math. Anal. Appl. 326 (2007), 281–296.
Login: