N-Cubic Sets Applied to Linear Spaces
Download PDF
Authors: P. R. KAVYASREE AND B. SURENDER REDDY
DOI: 10.46793/KgJMat2204.575K
Abstract:
The concept of ????-fuzzy sets is a good mathematical tool to deal with uncertainties that use the co-domain [−1, 0] for the membership function. The notion of ????-cubic sets is defined by combining interval-valued ????-fuzzy sets and ????-fuzzy sets. Using this ????-cubic sets, we initiate a new theory called ????-cubic linear spaces. Motivated by the notion of cubic linear spaces we define P-union (resp. R-union), P-intersection (resp. R-intersection) of ????-cubic linear spaces. The notion of internal and external ????-cubic linear spaces and their properties are investigated.
Keywords:
????-Interval number, interval-valued ????-fuzzy linear space, ????-cubic linear space, internal and external ????-cubic linear spaces, P-intersection and P-union, R-intersection and R-union.
References:
[1] K. Atanassov, Intuitionistic fuzzy sets, Fuzzy Sets and Systems 20 (1986), 87–96.
[2] K. Atanassov and G. Gargov, Interval valued intuitionistic fuzzy sets, Fuzzy Sets and Systems 31 (1989), 343–349.
[3] K. S. Abdukhalikov, M. S. Tulenbaev and U. U. Umirbaev, On fuzzy bases of vector spaces, Fuzzy Sets and Systems 63 (1994), 201–206.
[4] M. Gulistan, S. Rashid, Y. B. Jun and S. Kadry, N-cubic sets and aggregation operators, Journal of Intelligent and Fuzzy Systems 37(4) (2019), 5009–5023.
[5] Y. B. Jun, J. Kavikumar and K.-S. So, N-ideals of subtraction algebras, Commun. Korean Math. Soc. 25(2) (2010), 173–184.
[6] Y. B. Jun, C. S. Kim and K. O. Kang, Cubic sets, Ann. Fuzzy Math. Inform. 4(1) (2012), 83–98.
[7] Y. B. Jun, C. S. Kim and M. S. Kang, Cubic subalgebras and ideals of bck/bci-algebras, Far East Journal of Mathematical Sciences 44(2) (2010), 239–250.
[8] A. K. Katsaras and D. B. Liu, Fuzzy vector spaces and fuzzy topological vector spaces, J. Math. Anal. Appl. 58 (1977), 135–146.
[9] P. Lubczonok, Fuzzy vector spaces, Fuzzy Sets and Systems 38(3) (1990), 329–343.
[10] G. Lubczonok and V. Murali, On flags and fuzzy subspaces of vector spaces, Fuzzy Sets and Systems 125(2) (2002), 201–207.
[11] S. Nanda, Fuzzy fields and fuzzy linear spaces, Fuzzy Sets and Systems 33(2) (1989), 257–259.
[12] T. Senapati, C. S. Kim, M. Bhowmik and M. Pal, Cubic subalgebras and cubic closed ideals of b-algebras, Fuzzy Information and Engineering 7(2) (2015), 129–149.
[13] T. Senapati and K. P. Shum, Cubic implicative ideals of bck-algebras, Missouri J. Math. Sci. 29(2) (2017), 125–138.
[14] T. Senapati, Y. B. Jun and K. P. Shum, Cubic set structure applied in up-algebras, Discrete Math. Algorithms Appl. 10(4) (2018), Paper ID 1850049.
[15] T. Senapati and K. P. Shum, Cubic commutative ideals of bck-algebras, Missouri J. Math. Sci. 30(1) (2018), 5–19.
[16] T. Senapati and R. R. Yager, Some new operations over fermatean fuzzy numbers and application of fermatean fuzzy wpm in multiple criteria decision making, Informatica 30(2) (2019), 391–412.
[17] S. Vijayabalaji and S. Sivaramakrishnan, A cubic set theoretical approach to linear space, Abstr. Appl. Anal. 523(129) (2015), Article ID 523129, 8 pages.
[18] G. Wenxiang and L. Tu, Fuzzy linear spaces, Fuzzy Sets and Systems 49(3) (1992), 377–380.
[19] L. A. Zadeh, Fuzzy sets, Information and Control 8 (1965), 338–353.
[20] L. A. Zadeh, The concept of a linguistic variable and its application to approximate reasoning, Inform. Sci. 8 (1975), 199–249.