N-Cubic Sets Applied to Linear Spaces


Download PDF

Authors: P. R. KAVYASREE AND B. SURENDER REDDY

DOI: 10.46793/KgJMat2204.575K

Abstract:

The concept of ????-fuzzy sets is a good mathematical tool to deal with uncertainties that use the co-domain [1, 0] for the membership function. The notion of ????-cubic sets is defined by combining interval-valued ????-fuzzy sets and ????-fuzzy sets. Using this ????-cubic sets, we initiate a new theory called ????-cubic linear spaces. Motivated by the notion of cubic linear spaces we define P-union (resp. R-union), P-intersection (resp. R-intersection) of ????-cubic linear spaces. The notion of internal and external ????-cubic linear spaces and their properties are investigated.



Keywords:

????-Interval number, interval-valued ????-fuzzy linear space, ????-cubic linear space, internal and external ????-cubic linear spaces, P-intersection and P-union, R-intersection and R-union.



References:

[1]   K. Atanassov, Intuitionistic fuzzy sets, Fuzzy Sets and Systems 20 (1986), 87–96.

[2]   K. Atanassov and G. Gargov, Interval valued intuitionistic fuzzy sets, Fuzzy Sets and Systems 31 (1989), 343–349.

[3]   K. S. Abdukhalikov, M. S. Tulenbaev and U. U. Umirbaev, On fuzzy bases of vector spaces, Fuzzy Sets and Systems 63 (1994), 201–206.

[4]   M. Gulistan, S. Rashid, Y. B. Jun and S. Kadry, N-cubic sets and aggregation operators, Journal of Intelligent and Fuzzy Systems 37(4) (2019), 5009–5023.

[5]   Y. B. Jun, J. Kavikumar and K.-S. So, N-ideals of subtraction algebras, Commun. Korean Math. Soc. 25(2) (2010), 173–184.

[6]   Y. B. Jun, C. S. Kim and K. O. Kang, Cubic sets, Ann. Fuzzy Math. Inform. 4(1) (2012), 83–98.

[7]   Y. B. Jun, C. S. Kim and M. S. Kang, Cubic subalgebras and ideals of bck/bci-algebras, Far East Journal of Mathematical Sciences 44(2) (2010), 239–250.

[8]   A. K. Katsaras and D. B. Liu, Fuzzy vector spaces and fuzzy topological vector spaces, J. Math. Anal. Appl. 58 (1977), 135–146.

[9]   P. Lubczonok, Fuzzy vector spaces, Fuzzy Sets and Systems 38(3) (1990), 329–343.

[10]   G. Lubczonok and V. Murali, On flags and fuzzy subspaces of vector spaces, Fuzzy Sets and Systems 125(2) (2002), 201–207.

[11]   S. Nanda, Fuzzy fields and fuzzy linear spaces, Fuzzy Sets and Systems 33(2) (1989), 257–259.

[12]   T. Senapati, C. S. Kim, M. Bhowmik and M. Pal, Cubic subalgebras and cubic closed ideals of b-algebras, Fuzzy Information and Engineering 7(2) (2015), 129–149.

[13]   T. Senapati and K. P. Shum, Cubic implicative ideals of bck-algebras, Missouri J. Math. Sci. 29(2) (2017), 125–138.

[14]   T. Senapati, Y. B. Jun and K. P. Shum, Cubic set structure applied in up-algebras, Discrete Math. Algorithms Appl. 10(4) (2018), Paper ID 1850049.

[15]   T. Senapati and K. P. Shum, Cubic commutative ideals of bck-algebras, Missouri J. Math. Sci. 30(1) (2018), 5–19.

[16]   T. Senapati and R. R. Yager, Some new operations over fermatean fuzzy numbers and application of fermatean fuzzy wpm in multiple criteria decision making, Informatica 30(2) (2019), 391–412.

[17]   S. Vijayabalaji and S. Sivaramakrishnan, A cubic set theoretical approach to linear space, Abstr. Appl. Anal. 523(129) (2015), Article ID 523129, 8 pages.

[18]   G. Wenxiang and L. Tu, Fuzzy linear spaces, Fuzzy Sets and Systems 49(3) (1992), 377–380.

[19]   L. A. Zadeh, Fuzzy sets, Information and Control 8 (1965), 338–353.

[20]   L. A. Zadeh, The concept of a linguistic variable and its application to approximate reasoning, Inform. Sci. 8 (1975), 199–249.