Computing the Total Vertex Irregularity Strength Associated with Zero Divisor Graph of Commutative Ring


Download PDF

Authors: A. AHMAD

DOI: 10.46793/KgJMat2205.711A

Abstract:

Let R be a commutative ring and Z(R) be the set of all zero divisors of R. Γ(R) is said to be a zero divisor graph if x,y V (Γ(R)) = Z(R) and (x,y) E(Γ(R)) if and only if x.y = 0. In this paper, we determine the total vertex irregularity strength of zero divisor graphs associated with the commutative rings p2 × Zq for p,q prime numbers.



Keywords:

Total vertex irregularity strength, zero divisor graph, commutative ring.



References:

[1]   A. Ahmad and M. Bača, On vertex irregular total labelings, Ars Combin. 112 (2013), 129–139.

[2]   A. Ahmad, M. Bača and Y. Bashir, Total vertex irregularity strength of certain classes of unicyclic graphs, Bull. Math. Soc. Sci. Math. Roumanie (N.S.) 57(105) (2014), 147–152.

[3]   A. Ahmad, E. T. Baskoro and M. Imran, Total vertex irregularity strength of disjoint union of helm graphs, Discuss. Math. Graph Theory 32(3) (2012), 427–434.

[4]   A. Ahmad and A. Haider, Computing the radio labeling associated with zero divisor graph of a commutative ring, UPB Scientific Bulletin, Series A 81(1) (2019), 65–72.

[5]   S. Akbari and A. Mohammadian, On the zero-divisor graph of a commutative ring, J. Algebra 274 (2004), 847–855.

[6]   D. F. Anderson and P. S. Livingston, The zero-divisor graph of commutative ring, J. Algebra 217 (1999), 434–447.

[7]   D. F. Anderson and S. B. Mulay, On the diameter and girth of a zero-divisor graph, J. Pure Appl. Algebra 210(2) (2008), 543–550.

[8]   M. Anholcer, M. Kalkowski and J. Przybylo, A new upper bound for the total vertex irregularity strength of graphs, Discrete Math. 309 (2009), 6316–6317.

[9]   M. Bača, S. Jendroľ, M. Miller and J. Ryan, On irregular total labellings, Discrete Math. 307 (2007), 1378–1388.

[10]   I. Beck, Coloring of a commutative ring, J. Algebra 116 (1988), 208–226.

[11]   T. Bohman and D. Kravitz, On the irregularity strength of trees, J. Graph Theory 45 (2004), 241–254.

[12]   G. Chartrand, M. S. Jacobson, J. Lehel, O. R. Oellermann, S. Ruiz and F. Saba, Irregular networks, Congr. Numer. 64 (1988), 187–192.

[13]   A. Frieze, R. J. Gould, M. Karonski and F. Pfender, On graph irregularity strength, J. Graph Theory 41 (2002), 120–137.

[14]   J. A. Gallian, A Dynamic Survey of Graph Labeling, Electron. J. Combin. 20 (2017), #DS6.

[15]   T. Nierhoff, A tight bound on the irregularity strength of graphs, SIAM J. Discrete Math. 13 (2000), 313–323.

[16]   Nurdin, E. T. Baskoro, A. N. M. Salman and N. N. Gaos, On the total vertex irregularity strength of trees, Discrete Math. 310 (2010), 3043–3048.

[17]   J. Przybylo, Linear bound on the irregularity strength and the total vertex irregularity strength of graphs, SIAM J. Discrete Math. 23 (2009), 511–516.