A Stability Result for a Timoshenko System with Infinite History and Distributed Delay Term


Download PDF

Authors: Z. KHALILI AND D. OUCHENANE

DOI: 10.46793/KgJMat2302.281K

Abstract:

This manuscript is mainly focusing on a general stability of solution for one-dimensional Timoshenko system with infinite history and distributed delay term regardless also of the speeds of wave propagation. We prove our result by using the energy method combined with some properties of convex functions.



Keywords:

Timoshenko system, distributed delay, energy methode, infinite history.



References:

[1]   C. M. Dafermos, Asymptotic stability in viscoelasticity, Arch. Ration. Mech. Anal 37 (1970), 297–308. http://dx.doi.org/10.1007/BF00251609

[2]   R. Datko, J. Lagnese and M. Polis, An example on the effect of time delays in boundary feedback stabilization of wave equations, SIAM J. Control Optim. 24 (1986), 152–156. http://dx.doi.org/10.1109/CDC.1985.268529

[3]   J. Hao and F. Wang, Energy decay in a Timoshenko-type system for thermoelasticity of type III with distributed delay and past history, Electron. J. Differential Equations 2018(75) (2018), 1–27.

[4]   M. Kafini, S. A. Messaoudi and M. I. Mustafa, Energy decay result in a Timoshenko-type system of thermoelasticity of type III with distributive delay, J. Math. Phys 54 (2013), Paper ID 101503. http://dx.doi.org/10.1063/1.4826102

[5]   M. Kafini, S. A. Messaoudi, M. I. Mustafa and T. Apalara, Well-posedness and stability results in a Timoshenko-type system of thermoelasticity of type III with delay, Z. Angew. Math. Phys 66 (2015), 1499–1517. http://dx.doi.org/10.1007/s00033-014-0475-9

[6]   M. Kirane, B. Said-Houari and M. N. Anwar, Stability result for the Timoshenko system with a time-varying delay term in the internal feedbacks, Comm. Pure Appl. Anal 10 (2011), 667–686. http://dx.doi.org/10.3934/cpaa.2011.10.667

[7]   I. Lasiecka, D. Tataru et al., Uniform boundary stabilization of semilinear wave equations with nonlinear boundary damping, Differential Integral Equations 6 (1993), 507–533.

[8]   W.-J. Liu and E. Zuazua, Decay rates for dissipative wave equations, Ric. Mat. 48 (1999), 61–75.

[9]   S. Nicaise and C. Pignotti, Stability and instability results of the wave equation with a delay term in the boundary or internal feedbacks, SIAM J. Control Optim. 45 (2006), 1561–1585, http://dx.doi.org/10.1137/060648891

[10]   J. E. M. Rivera and R. Racke, Mildly dissipative nonlinear Timoshenko systems-global existence and exponential stability, J. Math. Anal. Appl. 276 (2002), 248–278. http://dx.doi.org/10.1016/j.amc.2010.08.021

[11]   B. Said-Houari and Y. Laskri, A stability result of a Timoshenko system with a delay term in the internal feedback, Appl. Math. Comput. 217 (2010), 2857–2869. http://dx.doi.org/10.1016/S0022-247X(02)00436-5

[12]   B. Said-Houari and R. Rahali, A stability result for a Timoshenko system with past history and a delay term in the internal feedback, Dynam. Systems Appl. 20 (2011), 327.