On the Semigroup of Bi-Ideals of an Ordered Semigroup
Download PDF
Authors: S. MALLICK AND K. HANSDA
DOI: 10.46793/KgJMat2303.339M
Abstract:
The purpose of this paper is to characterize an ordered semigroup S in terms of the properties of the associated semigroup ℬ(S) of all bi-ideals of S. We show that an ordered semigroup S is a Clifford ordered semigroup if and only if ℬ(S) is a semilattice. The semigroup ℬ(S) is a normal band if and only if the ordered semigroup S is both regular and intra regular. For each subvariety ???? of bands, we characterize the ordered semigroup S such that ℬ(S) ∈????.
Keywords:
Bi-ideal, regular, Clifford, left Clifford, locally testable, left normal band, normal band, rectangular band.
References:
[1] A. K. Bhuniya and K. Hansda, On completely regular and Clifford ordered semigroups, Afrika Matematika (2020), https://doi.org/10.1007/s13370-020-00778-1
[2] J. M. Howie, Fundamentals of Semigroup Theory, Clarendon Press, Oxford, 1995.
[3] K. S. S. Nambooripad, Pseudo-semilattices and biordered sets I, Simon Stevin 55 (1981), 103–110.
[4] K. Hansda, Bi-ideals in Clifford ordered semigroup, Discuss. Math. Gen. Algebra Appl. 33 (2013), 73–84. https://doi.org/10.7151/dmgaa.1195
[5] K. Hansda, Minimal bi-ideals in regular and completely regular ordered semigroups, Quasigroup and Related Systems 27(1), 63–72.
[6] N. Kehayopulu, Note on Green’s relation in ordered semigroup, Math. Japonica 36 (1991), 211–214.
[7] N. Kehayopulu, On completely regular poe-semigroups, Math. Japonica 37 (1992), 123–130.
[8] N. Kehayopulu, J. S. Ponizovskii and M. Tsingelis, Bi-ideals in ordered semigroups and ordered groups, J. Math. Sci. 112 (4) (2002), 4353–4354. https://doi.org/10.1023/A:1020347003781
[9] N. Kehayopulu and M. Tsingelis, Fuzzy bi-ideals in ordered semigroups, Inform. Sci. 171 (2005), 13–28. https://doi.org/10.1016/j.ins.2004.03.015
[10] R. A. Good and D. R. Hughes, Associated groups for a semigroup, Bull. Amer. Math. Soc. 58 (1952), 624–625.
[11] S. Lajos, On the bi-ideals in semigroups, Proc. Japan Acad. 45(8) (1969), 710–712. https://doi.org/10.3792/pja/1195520625
[12] Y. Zalcstein, Locally testable semigroups, Semigroup Forum 5(1973), 216–227. https://doi.org/10.1007/BF02572893