Some Inequalities for the Polar Derivative of a Polynomial


Download PDF

Authors: M. H. GULZAR, B. A. ZARGAR AND R. AKHTER

DOI: 10.46793/KgJMat2304.567G

Abstract:

Let P(z) be a polynomial of degree n which has no zeros in |z| < 1, then it was proved by Liman, Mohapatra and Shah [?] that

|                  (         )       |
|                    |α|-−--1        |
||zD  αP (z ) + n β              P (z)||
                        2
n
--
2{ |        (         ) |   |       (         ) |}
  |          |α| − 1   |   |         |α | − 1  |
  ||α  + β    --------  || + ||z +  β   --------  ||
                2                       2 max |z|=1|P(z)|
n
--
 2{ ||       ( |α | − 1) ||    ||      (  |α | − 1 ) ||}
  |α +  β   --------  | −  |z +  β    --------  |
  |            2      |    |            2      | min |z|=1|P(z)|,

for any β with |β|≤ 1 and |z| = 1. In this paper we generalize the above inequality and our result also generalizes certain well known polynomial inequalities.



Keywords:

Polynomial, Bernstein inequality, polar derivative.



References:

[1]   A. Aziz, Inequalities for polar derivative of a polynomial, J. Approx. Theory 55 (1988), 183–193. https://doi.org/10.1016/0021-9045(88)90085-8

[2]   A. Aziz and Q. M. Dawood, Inequalities for a polynomial and its derivative, J. Approx. Theory 54 (1998), 306–313. https://doi.org/10.1016/0021-9045(88)90006-8

[3]   A. Aziz and N. A. Rather, A refinement of a theorem of Paul Turan concerning polynomials, Math. Inequal. Appl. 1 (1998), 231–238. https://doi.org/10.7153/MIA-01-21

[4]   A. Aziz and W. M. Shah, Inequalities for the polar derivative of a polynomial, Indian J. Pure Appl. Math. 29 (1998), 163–173.

[5]   S. N. Bernstein, Sur Ľordre de la meilleur approximation des fonctions continues par des polynomes de degré donné, Mémoire de ľ’Académie Royal de Belgique (2) 4 (1912), 1–103.

[6]   S. Bernstein, Sur la limitation des derivees des polnomes, C. R. Math. Acad. Sci. Paris 190 (1930), 338–341.

[7]   K. K. Dewan and S. Hans, Generalization of certain well-known polynomial inequalities, J. Math. Anal. Appl. 363 (2010), 38–41. https://doi.org/10.1016/j.jmaa.2009.07.049

[8]   V. K. Jain, Generalization of certain well-known inequalities for polynomials, Glas. Mat. Ser. III 32 (1997), 45–52.

[9]   E. Laguerre, Oeuvres, Vol. I, Gauthier-Villars, Paris, 1898.

[10]   P. D. Lax, Proof of a conjecture of P. Erdös on the derivative of a polynomial, Bull. Amer. Math. Soc. 50 (1944), 509–513. https://doi.org/10.1090/S0002-9904-1944-08177-9

[11]   A. Liman, R. N. Mohapatra and W. M. Shah, Inequalities for the polar derivative of a polynomial, Complex Anal. Oper. Theory 6 (2012), 1199–1209. https://doi.org/10.1007/s11785-010-0120-3

[12]   M. A. Malik and M. C. Vong, Inequalities concerning the derivative of polynomials, Rend. Circ. Mat. Palermo 34 (1985), 422–426. https://doi.org/10.1007/BF02844535

[13]   Xin Li, A comparison inequality for rational functions, Proc. Amer. Math. Soc. 139 (2011), 1659–1665.