A Product Formula and Certain q-Laplace Type Transforms for the q-Humbert Functions
Download PDF
Authors: T. NAHID AND S. A. WANI
DOI: 10.46793/KgJMat2305.727N
Abstract:
The present work deals with the mathematical investigation of the product formulas and several q-Laplace type integral transforms of certain q-Humbert functions. In our investigation, the qL2-transform and qℒ2-transform of certain q2-Humbert functions are considered. Several useful special cases have been deduced as applications of main results.
Keywords:
q-extensions of Humbert functions, q-Laplace type transforms.
References:
[1] W. H. Abdi, On q-Laplace transforms, The Proceedings of the National Academy of Sciences, India 29 (1960), 389–408.
[2] W. H. Abdi, Applications of q-Laplace transform to the solution of certain q-integral equations, Rend. Circ. Mat. Palermo 11(3) (1962), 245–257. https://doi.org/10.1007/BF02843870
[3] D. Albayrak, S. D. Purohit and F. Ucar, On q-Sumudu transforms of certain q-polynomials, Filomat 27(2) (2013), 411–427. https://doi.org/10.2298/FIL1302411A
[4] D. Albayrak, S. D. Purohit and F. Ucar, On q-analogues of Sumudu transform, Analele Universitatii “Ovidius” Constanta - Seria Matematica 21(1) (2013), 239–259. https://doi.org/10.2478/auom-2013-0016
[5] F. B. M. Belgacem, Sumudu transform applications to Bessel functions and equations, Appl. Math. Sci. 4(74) (2010), 3665–3686.
[6] M. A. Chaudhry, Laplace transform of certain functions with applications, Internat. J. Math. Math. Sci. 23(2) (2000), 99–102. https://doi.org/10.1155/S0161171200001150
[7] G. Gasper and M. Rahman, Basic Hypergeometric Series, 2nd Edition, Cambridge University Press, Cambridge, 2004.
[8] V. G. Kac and P. Cheung, Quantum Calculus, Springer, New York, 2002.
[9] S. Khan and T. Nahid, Numerical computation of zeros of certain hybrid q-special sequences, Procedia Computer Science 152 (2019), 166–171. https://doi.org/10.1016/j.procs.2019.05.039
[10] S. Khan and T. Nahid, Determinants forms, difference equations and zeros of the q-Hermite Appell polynomials, Mathematics 6(11) (2018), 1–16. https://doi.org/10.3390/math6110258
[11] M. Riyasat, S. Khan and T. Nahid, Quantum algebra ℰq(2) and 2D q-Bessel functions, Rep. Math. Phys. 83(2) (2019), 191–206. https://doi.org/10.1016/S0034-4877(19)30039-4
[12] M. Riyasat, T. Nahid and S. Khan, q-Tricomi functions and quantum algebra representations, Georgian Math. J. (2020) (to appear). https://doi.org/10.1515/gmj-2020-2079
[13] M. Rahman, An addition theorem and some product formulas for q-Bessel functions, Canad. J. Math. 40(5) (1988), 1203–1221. https://doi.org/10.4153/CJM-1988-051-7
[14] M. B. Said and J. El Kamel, Product formula for the generalized q-Bessel function, J. Difference Equ. Appl. 22(11) (2016), 1663–1672. https://doi.org/10.1080/10236198.2016.1234615
[15] L. J. Slater, Generalized Hypergeometric Functions, Cambridge University Press, Cambridge, 1966.
[16] A. De Sole and V. G. Kac, On integral representations of q-gamma and q-beta functions, Rendiconti Lincei - Matematica e Applicazioni 9 (2005), 11–29.
[17] H. M. Srivastava and A. Shehata, A family of new q-extensions of the Humbert functions, Eur. J. Math. Sci. 4(1) (2018), 13–26.
[18] R. F. Swarttouw, An addition theorem and some product formulas for the Hahn-Exton q-Bessel functions, Canad. J. Math. 44(4) (1992), 867–879. https://doi.org/10.4153/CJM-1992-052-6
[19] F. Uçar and D. Albayrak, On q-Laplace type integral operators and their applications, J. Difference Equ. Appl. 18(6) (2012), 1001–1014. https://doi.org/10.1080/10236198.2010.540572
[20] G. K. Watugala, Sumudu transform: A new integral transform to solve differential equations and control engineering problems, Mathematical Engineering in Industry 24(1) (1993), 35–43. https://doi.org/10.1080/0020739930240105
[21] D. V. Widder, The Laplace Transform, Princeton University Press, Princeton, New Jersey, 1946.
[22] O. Yürekli, Theorems on L2-transforms and its applications, Complex Var. Elliptic Equ. 38(2) (1999), 95–107. https://doi.org/10.1080/17476939908815157
[23] O. Yürekli, New identities involving the Laplace and the L2-transforms and their applications, Appl. Math. Comput. 99(2-3) (1999), 141–151. https://doi.org/10.1016/S0096-3003(98)00002-2
[24] O. Yürekli and I. Sadek, A Parseval-Goldstein type theorem on the Widder potential transform and its applications, Int. J. Math. Math. Sci. 14(3) (1991), 517–524. https://doi.org/10.1155/S0161171291000704