Existence Results for a Fractional Differential Inclusion of Arbitrary Order with Three-Point Boundary Conditions
Download PDF
Authors: S. K. VERMA, R. K. VATS, H. K. NASHINE AND H. M. SRIVASTAVA
DOI: 10.46793/KgJMat2306.935V
Abstract:
This paper studies existence of solutions for a new class of fractional differential inclusions of arbitrary order with three-point fractional integral boundary conditions. Our results are based on Bohnenblust-Karlin’s fixed point theorem.
Keywords:
Caputo derivative, fractional differential inclusions, fixed point theorem.
References:
[1] A. A. Kilbas, H. M. Srivastava and J. J. Trujillo, Theory and Applications of Fractional Differential Equations, Elsevier, Amsterdam, 2006.
[2] A. Cernea, On a fractional differential inclusion with boundary conditions, Stud. Univ. Babes-Bolyai Math. LV(3) (2010), 105–113.
[3] A. Lasota and Z. Opial, An application of the Kakutani-Ky-Fan theorem in the theory of ordinary differential equations, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 13 (1965), 781–786.
[4] B. Ahmad, M. Alghanmi, A. Alsaedi, H. M. Srivastava and S. K. Ntouyas, The Langevin equation in terms of generalized Liouville-Caputo derivatives with nonlocal boundary conditions involving a generalized fractional integral, Mathematics 7 (2019), 1–10. https://doi.org/10.3390/math7060533
[5] B. Ahmad and R. Luca, Existence of solutions for sequential fractional integro-differential equations and inclusions with nonlocal boundary conditions, Appl. Math. Comput. 339 (2018), 516–534. https://doi.org/10.1016/j.amc.2018.07.025
[6] B. Ahmad, S. K. Ntouyas, R. P. Agarwal and A. Alsaedi, On fractional differential equations and inclusions with nonlocal and average-valued (integral) boundary conditions, Adv. Difference Equ. 2016 (2016), Article ID 80. https://doi.org/10.1186/s13662-016-0807-5
[7] H. F. Bohnenblust and S. Karlin, On a theorem of Ville, Contributions to the Theory of Games, Princeton University Press 1 (1950), 155–160.
[8] H. M. Srivastava, K. M. Saad and E. H. F. Al-Sharif, New analysis of the time-fractional and space-time fractional-order Nagumo equation, Journal of Information and Mathematical Sciences 10(4) (2018), 545–561. http://doi.org/10.26713/jims.v10i4.961
[9] H. M. Srivastava and K. M. Saad, New approximate solution of the time-fractional Nagumo equation involving fractional integrals without singular kernel, Appl. Math. Inf. Sci. 14(1) (2020), 1–8. http://doi.org/10.18576/amis/140101
[10] H. M. Srivastava and K. M. Saad, Some new models of the time-fractional gas dynamics equation, Advanced Mathematical Models and Applications 3(1) (2018), 5–17.
[11] I. Podlubny, Fractional Differential Equations, Academic Press, San Diego, 1999.
[12] J. Sabatier, O. P. Agrawal and J. A. T. Machado, Advances in Fractional Calculus: Theoretical Developments and Applications in Physics and Engineering, Springer, Dordrecht, 2007.
[13] K. Deimling, Multivalued Differential Equations, Walter De Gruyter, Berlin, New York, 1992.
[14] M. Benchohra and N. Hamidi, Fractional order differential inclusions on the half-line, Surv. Math. Appl. 5 (2010), 99–111.
[15] M. Kamenskii, V. Obukhovskii, G. Petrosyan and J. Yao, Boundary value problems for semilinear differential inclusions of fractional order in a Banach space, Appl. Anal. 97(4) (2018), 571–591. https://doi.org/10.1080/00036811.2016.1277583
[16] M. Yang and Q. Wang, Approximate controllability of Riemann-Liouville fractional differential inclusions, Appl. Math. Comput. 274 (2016), 267–281. http://doi.org/10.1016/j.amc.2015.11.017
[17] R. P. Agarwal, S. K. Ntouyas, B. Ahmad and A. K. Alzahrani, Hadamard-type fractional functional differential equations and inclusions with retarded and advanced arguments, Adv. Difference Equ. 2016 (2016), Article ID 92. http://doi.org/10.1186/s13662-016-0810-x
[18] S. G. Samko, A. A. Kilbas and O. I. Marichev, Fractional Integrals and Derivatives: Theory and Applications, Gordon and Breach, Yverdon, 1993.
[19] S. Hu and N. Papageorgiou, Handbook of Multivalued Analysis, Kluwer, Dordrecht, 1997.
[20] S. K. Ntouyas, Existence results for non local boundary value problems for fractional differential equations and inclusions with fractional integral boundary conditions, Discuss. Math. Differ. Incl. Control Optim. 33 (2013), 17–39. http://doi.org/10.7151/dmdico.1146
[21] S. Kumar, R. K. Vats and H. K. Nashine, Existence and uniqueness results for three-point nonlinear fractional (arbitrary order) boundary value problem, Mat. Vesnik 70(4) (2018), 314–325.
[22] V. Vijayakumar, Approximate controllability results for analytic resolvent integro-differential inclusions in Hilbert spaces, Internat. J. Control. 91(1) (2018), 204–214. https://doi.org/10.1080/00207179.2016.1276633
[23] Y. Yuea, Y. Tiana and Z. Bai, Infinitely many nonnegative solutions for a fractional differential inclusion with oscillatory potential, Appl. Math. Lett. 88 (2019), 64–72. https://doi.org/10.1016/j.aml.2018.08.010