A Fixed Point Theorem for Mappings Satisfying Cyclical Contractive Conditions in (3, 2)-W-symmetrizable Spaces


Download PDF

Authors: T. DIMOVSKI AND D. DIMOVSKI

DOI: 10.46793/KgJMat2307.1021D

Abstract:

In this paper we are concerned with (3, 2)-symmetrics and (3, 2)-W-symmetrizable spaces. First we give the basic definitions, the notation, some examples and elementary results about these spaces, then we prove the existence of a fixed point for self mappings satisfying cyclical contractive conditions in (3, 2)-W-symmetrizable spaces.



Keywords:

(3, 2)-W-symmetrizable space, cyclical contractive condition, self mapping, fixed point.



References:

[1]   P. Alexandroff and V. Niemytzki, Der allgemeine metrisationssatz und das Symmetrieaxiom, Rec. Math. [Mat. Sbornik] N.S. 45(3) (1938), 663–672.

[2]   S. Banach, Sur les opérations dans les ensembles abstraits et leur application aux équations intégrales, Fundamenta Mathematicae  3(1) (1922), 133–181.

[3]   S. Čalamani and D. Dimovski, Topologies induced by (3,j,ρ)-metrics, j {1, 2}, International Mathematical Forum 9(22) (2014), 1075–1088. http://dx.doi.org/10.12988/imf.2014.4595

[4]   S. Čalamani, T. Dimovski and D. Dimovski, Separation properties for some topologies induced by (3,j,ρ)-metrics, j {1, 2}, Math. Nat. Sci. Proceedings of the Sixth International Scientific Conference - FMNS2015 1 (2015), 24–30.

[5]   B. C. Dhage, Generalized metric spaces mappings with fixed point, Bull. Calcutta Math. Soc. 84 (1992), 329–336.

[6]   D. Dimovski, Generalized metrics - (n,m,r)-metrics, Mat. Bilten 16(42) (1992), 73–76.

[7]   D. Dimovski (3, 1)-metrizable topological spaces, Math. Maced. 3 (2005), 59–64.

[8]   T. Dimovski and D. Dimovski, On (3, 2)-K-metrizable spaces, Math. Nat. Sci. Proceedings of the Fifth International Scientific Conference - FMNS2013 1 (2013), 73–79.

[9]   T. Dimovski and D. Dimovski, Some properties concerning (3, 2)-K-metrizable spaces, Proceedings of the Fifth International Scientific Conference - FMNS2013 1 (2015), 18–23.

[10]   T. Dimovski and D. Dimovski, Convergence of sequences in (3,j,ρ)-N-metrizable spaces, j ∈{1, 2}, Mat. Bilten 42(1) (2018), 21–27.

[11]   S. Gähler, 2-metrische Räume und ihre topologische struktur, Math. Nachr. 26 (1963), 115–148. https://doi.org/10.1002/mana.19630260109

[12]   W. A. Kirk, P. S. Srinivasan and P. Veeramani, Fixed points for mappings satisfying cyclical contractive conditions, Fixed Point Theory 4(1) (2003), 79–89.

[13]   R. Kopperman, All topologies come from generalized metrics, Amer. Math. Monthly 95(2) (1988), 89–97. https://doi.org/10.1080/00029890.1988.11971974

[14]   K. Menger, Untersuchungen über allgemeine metrik, Math. Ann. 100 (1928), 75–163.

[15]   Z. Mamuzič, Uvod u opštu topologiju I, Volume 17 of Matematička biblioteka, Zavod za izdavanje udžbenika, Beograd, 1960.

[16]   Z. Mustafa and B. Sims, Some remarks concerninig D-metric spaces, Proceedings of the International Conferences on Fixed Point Theorey and Applications, Valencia (Spain), (2003), 189–198.

[17]   Z. Mustafa and B. Sims, A new approach to generalized metric spaces, J. Nonlinear Convex Anal. 7(2) (2006), 289–297.

[18]   S. Nedev, Generalized-metrizable spaces, C. R. Acad. Bulgare Sci. 20(6) (1967), 513–516.

[19]   S. Nedev, O-metrizable spaces, Trudy Moskovskogo Matematicheskogo Obshchestva 24 (1971), 201–236.

[20]   S. Nedev and M. Choban, On metrization of topological groups, Vestnik Moskovskogo Universiteta. Seriya 1. Matematika. Mekhanika 6 (1968), 18–20.