A Fixed Point Theorem for Mappings Satisfying Cyclical Contractive Conditions in (3, 2)-W-symmetrizable Spaces
Download PDF
Authors: T. DIMOVSKI AND D. DIMOVSKI
DOI: 10.46793/KgJMat2307.1021D
Abstract:
In this paper we are concerned with (3, 2)-symmetrics and (3, 2)-W-symmetrizable spaces. First we give the basic definitions, the notation, some examples and elementary results about these spaces, then we prove the existence of a fixed point for self mappings satisfying cyclical contractive conditions in (3, 2)-W-symmetrizable spaces.
Keywords:
(3, 2)-W-symmetrizable space, cyclical contractive condition, self mapping, fixed point.
References:
[1] P. Alexandroff and V. Niemytzki, Der allgemeine metrisationssatz und das Symmetrieaxiom, Rec. Math. [Mat. Sbornik] N.S. 45(3) (1938), 663–672.
[2] S. Banach, Sur les opérations dans les ensembles abstraits et leur application aux équations intégrales, Fundamenta Mathematicae 3(1) (1922), 133–181.
[3] S. Čalamani and D. Dimovski, Topologies induced by (3,j,ρ)-metrics, j ∈ {1, 2}, International Mathematical Forum 9(22) (2014), 1075–1088. http://dx.doi.org/10.12988/imf.2014.4595
[4] S. Čalamani, T. Dimovski and D. Dimovski, Separation properties for some topologies induced by (3,j,ρ)-metrics, j ∈ {1, 2}, Math. Nat. Sci. Proceedings of the Sixth International Scientific Conference - FMNS2015 1 (2015), 24–30.
[5] B. C. Dhage, Generalized metric spaces mappings with fixed point, Bull. Calcutta Math. Soc. 84 (1992), 329–336.
[6] D. Dimovski, Generalized metrics - (n,m,r)-metrics, Mat. Bilten 16(42) (1992), 73–76.
[7] D. Dimovski (3, 1,ρ)-metrizable topological spaces, Math. Maced. 3 (2005), 59–64.
[8] T. Dimovski and D. Dimovski, On (3, 2,ρ)-K-metrizable spaces, Math. Nat. Sci. Proceedings of the Fifth International Scientific Conference - FMNS2013 1 (2013), 73–79.
[9] T. Dimovski and D. Dimovski, Some properties concerning (3, 2,ρ)-K-metrizable spaces, Proceedings of the Fifth International Scientific Conference - FMNS2013 1 (2015), 18–23.
[10] T. Dimovski and D. Dimovski, Convergence of sequences in (3,j,ρ)-N-metrizable spaces, j ∈{1, 2}, Mat. Bilten 42(1) (2018), 21–27.
[11] S. Gähler, 2-metrische Räume und ihre topologische struktur, Math. Nachr. 26 (1963), 115–148. https://doi.org/10.1002/mana.19630260109
[12] W. A. Kirk, P. S. Srinivasan and P. Veeramani, Fixed points for mappings satisfying cyclical contractive conditions, Fixed Point Theory 4(1) (2003), 79–89.
[13] R. Kopperman, All topologies come from generalized metrics, Amer. Math. Monthly 95(2) (1988), 89–97. https://doi.org/10.1080/00029890.1988.11971974
[14] K. Menger, Untersuchungen über allgemeine metrik, Math. Ann. 100 (1928), 75–163.
[15] Z. Mamuzič, Uvod u opštu topologiju I, Volume 17 of Matematička biblioteka, Zavod za izdavanje udžbenika, Beograd, 1960.
[16] Z. Mustafa and B. Sims, Some remarks concerninig D-metric spaces, Proceedings of the International Conferences on Fixed Point Theorey and Applications, Valencia (Spain), (2003), 189–198.
[17] Z. Mustafa and B. Sims, A new approach to generalized metric spaces, J. Nonlinear Convex Anal. 7(2) (2006), 289–297.
[18] S. Nedev, Generalized-metrizable spaces, C. R. Acad. Bulgare Sci. 20(6) (1967), 513–516.
[19] S. Nedev, O-metrizable spaces, Trudy Moskovskogo Matematicheskogo Obshchestva 24 (1971), 201–236.
[20] S. Nedev and M. Choban, On metrization of topological groups, Vestnik Moskovskogo Universiteta. Seriya 1. Matematika. Mekhanika 6 (1968), 18–20.