A Numerical Solution of a Coupling System of Conformable Time-Derivative Two-Dimensional Burgers’ Equations


Download PDF

Authors: I. MOUS AND A. LAOUAR

DOI: 10.46793/KgJMat2401.007M

Abstract:

In this paper, we deal with a numerical solution of a coupling system of fractional conformable time-derivative two-dimensional (2D) Burgers’ equations. The presence of both the fractional time derivative and the nonlinear terms in this system of equations makes solving it more difficult. Firstly, we use the Cole-Hopf transformation in order to reduce the coupling system of equations to a conformable time-derivative 2D heat equation for which the numerical solution is calculated by the explicit and implicit schemes. Secondly, we calculate the numerical solution of the proposed system by using both the obtained solution of the conformable time-derivative heat equation and the inverse Cole-Hopf transformation. This approach shows its efficiency to deal with this class of fractional nonlinear problems. Some numerical experiments are displayed to consolidate our approach.



Keywords:

Burgers’ equation, Cole-Hopf transformation, conformable time-derivative, fractional calculus.



References:

[1]   T. Abdeljawad, On conformable fractional calculus, J. Comput. Appl. Math. 279 (2015), 5766. https://doi.org/10.1016/j.cam.2014.10.016

[2]   T. Abdeljawad, M. Al Horani and R. Khalil, Conformable fractional semigroup operators, Journal of Semigroup Theory and Applications 2015 (2015), Article ID 7.

[3]   T. Abdeljawad, Q. M. Al-Mdalla and F. Jarad, Fractional logistic models in the frame of fractional operators generated by conformable derivatives, Chaos Solitons Fractals 119 (2019), 94101. https://doi:10.1016/j.chaos.2018.12.015

[4]   D. R. Anderson and D. J. Ulness, Newly defined conformable derivatives, Adv. Dyn. Syst. Appl. 10 (2015), 109137. https://doi.org/10.1186/s13662-019-2294-y

[5]   A. Atangana, D. Baleanu and A. Alsaedi, New properties of conformable derivative, Open Math. 13 (2015), 889898. https://doi10.1515/math-2015-0081

[6]   M. Chau, A. Laouar, T. Garcia and P. Spiteri, Grid solution of problem with unilateral constraints, Numer. Algorithms 75(4) (2017), 879908. https://doi.org/10.1007/s11075-016-0224-6

[7]   Y. Çenesiz and A. Kurt, The new solution of time fractional wave equation with conformable fractional derivative definition, J. Number Theory 7 (2015), 7985.

[8]   A. Hannache, A. Laouar and H. Sissaoui, A mixed formulation in conjunction with the penalization method for solving the bilaplacian problem with obstacle type constraints, Malays. J. Math. Sci. 13(1) (2019), 4160.

[9]   R. Khalil, M. Al Horani, A. Youcef and M. Sababheh, A new definition of fractional derivative, J. Comput. Appl. Math. 264 (2014), 65701. http://dx.doi.org/10.1016/j.cam.2014.01.002

[10]   A. Kurt, Y. Çenesiz and O. Taşbozan, Exact solution for the conformable Burgers’ equation by the Hopf-Cole transform, Cankaya University Journal of Science and Engineering 13(2) (2016), 018023.

[11]   W. Liao, A fourth-order finite method for solving the system of two-dimensional Burgers’ equation, Internat. J. Numer. Methods Fluids 64 (2010), 565590. https://doi.org/10.1002/fld.2163

[12]   I. Mous and A. Laouar, A study of the shock wave schemes for the modified Burgers’ equation, J. Math. Anal. 11(1) (2020), 38–51.

[13]   I. Mous and A. Laouar, Analytical and numerical solutions of a fractional conformable derivative of the modified Burgers’ equation using the Cole-Hopf transformation, CEUR Workshop Proceeding, 2748 (2020), 8796.

[14]   D. M. Ortigueira and J. A. Tenreiro Machado, What is a fractional derivative?, J. Comput. Phys. 293 (2015), 413. https://doi.org/10.1016/j.jcp.2014.07.019

[15]   C. S. Ronobir and L. S. Andallah, Numerical solution of Burgers’ equation via Cole-Hopf transformation diffusion equation, International Journal Scientific Engineering Research 4 (2013), 14051409.

[16]   V. E. Tarasov, On chain rule for fractional derivatives, Commun. Nonlinear Sci. Numer. Simul. 30 (2016), 14. https://doi.org/10.1016/j.cnsns.2018.02.019

[17]   M. Yavuz, Novel solution methods for initial boundary value problems of fractional order with conformable differentiation, Int. J. Optim. Control. Theor. Appl. IJOCTA 8(1) (2018), 17. https://doi.org/10.11121/ijocta.01.2018.00540

[18]   M. Yavuz and A. Yokus, Analytical and numerical approaches to nerve impulse model of fractional-order, Numer. Methods Partial Differential Equations 36(6) (2020), 13481368. https://doi.org/10.1002/num.22476

[19]   M. Yavuz and B. Yaşkıran, Conformable Derivative Operator in Modelling Neuronal Dynamics, Appl. Appl. Math. 13(12) (2018), 803817.