Integral Transforms and Extended Hermite-Apostol Type Frobenius-Genocchi Polynomials


Download PDF

Authors: S. A. WANI AND M. RIYASAT

DOI: 10.46793/KgJMat2401.041W

Abstract:

The schemata for applications of the integral transforms of mathematical physics to recurrence relations, differential, integral, integro-differential equations and in the theory of special functions has been developed. The article aims to introduce and present operational representations for a new class of extended Hermite-Apostol type Frobenius-Genocchi polynomials via integral transforms. The recurrence relations and some identities involving these polynomials are established. The article concludes by establishing a determinant form and quasi-monomial properties for the Hermite-Apostol type Frobenius-Genocchi polynomials and for their extended forms.



Keywords:

Quasi-monomiality, extended Hermite-Apostol type Frobenius-Genocchi polynomials, fractional operators, operational rules.



References:

[1]   L. C. Andrews, Special Functions for Engineers and Applied Mathematicians, Macmillan Publishing Company, New York, 1985.

[2]   P. Appell, Sur une classe de polynômes, Ann. Sci. Éc. Norm. Supér. 9(2) (1880), 119–144.

[3]   P. Appell and J. Kampé de Fériet, Fonctions Hypergéométriques et Hypersphériques: Polynômes d’ Hermite, Gauthier-Villars, Paris, 1926.

[4]   S. Araci, M. Riyasat, S. A. Wani and S. Khan, Differential and integral equations for the 3-variable Hermite-Frobenius-Euler and Frobenius-Genocchi polynomials, Appl. Math. Inf. Sci. 11(5) (2017), 1–11.

[5]   S. Araci, M. Riyasat, S. A. Wani and S. Khan, A new class of Hermite-Apostol type Frobenius-Euler polynomials and its applications, Symmetry 10(1) (2018), 1–16.

[6]   D. Assante, C. Cesarano, C. Fornaro and L. Vazquez, Higher order and fractional diffusive equations, Journal of Engineering Science and Technology Review 8 (5) (2015), 202–204.

[7]   F. Avram and M. S. Taqqu, Noncentral limit theorems and Appell polynomials, Ann. Probab. 15(2) (1987), 767–775.

[8]   Y. Ben Cheikh, Some results on quasi-monomiality, Appl. Math. Comput. 141 (2003), 63–76.

[9]   G. Dattoli, Hermite-Bessel and Laguerre-Bessel functions: A by-product of the monomiality principle, Advanced Special Functions and Applications - Proceedings of the Melfi School on Advanced Topics in Mathematics and Physics, Melfi, 1999, 147–164.

[10]   G. Dattoli, Generalized polynomials operational identities and their applications, J. Comput. Appl. Math. 118 (2000), 111–123.

[11]   G. Dattoli, P. E. Ricci, C. Cesarano and L. Vázquez, Special polynomials and fractional calculus, Math. Comput. Model. 37 (2003), 729–733.

[12]   U. Duran, M. Acikgoz and S. Araci, Construction of the type 2 poly-Frobenius-Genocchi polynomials with their certain applications, Adv. Differ. Equ. 432 (2020). https://doi.org/10.1186/s13662-020-02889-2

[13]   S. Khan, M. W. M. Al-Saad and R. Khan, Laguerre-based Appell polynomials: Properties and applications, Math. Comput. Model. 52 (2010), 247–259.

[14]   S. Khan, G. Yasmin, R. Khan and N. A. M. Hassan, Hermite-based Appell polynomials: Properties and applications, J. Math. Anal. Appl. 351 (2009), 756–764.

[15]   S. Khan and S. A. Wani, Extended Laguerre-Appell polynomials via fractional operators and their determinant forms, Turkish J. Math. 42 (2018), 1686–1697.

[16]    S. Khan and S. A. Wani, Fractional calculus and generalized forms of special polynomials associated with Appell sequences, Georgian Math. J. (2019). https://doi.org/10.1515/gmj-2019-2028

[17]   W. A. Khan, I. A. Khan, M. Acikgoz and U. Duran, Multifarious results for q-Hermite-based Frobenius-type Eulerian polynomials, Notes on Number Theory and Discrete Mathematics 26(2) (2020), 127–141. https://doi.org/10.7546/nntdm.2020.26.2.127-141

[18]   D. Levi, P. Tempesta and P. Winternitz, Umbral calculus, difference equations and the discrete Schrödinger equation, J. Math. Phys. 45(11) (2004), 4077–4105.

[19]   H. Oldham and N. Spanier, The Fractional Calculas, Academic Press, San Diego, CA, 1974.

[20]   M. Riyasat, S. Khan and S. Shah, Hermite-based hybrid polynomials and some related properties, Boll. Unione Mat. Ital. (2019). https://doi.org/10.1007/s40574-019-00212-w

[21]   J. Sandor and B. Crstici, Handbook of Number Theory, Vol. II, Kluwer Academic Publishers, Dordrecht, Boston, London, 2004.

[22]   J. F. Steffensen, The poweriod, an extension of the mathematical notion of power, Acta Math. 73 (1941), 333–366.

[23]   P. Tempesta, Formal groups, Bernoulli-type polynomials and L-series, C. R. Math. Acad. Sci. Paris 345(6) (2007), 303–306.

[24]   D.V. Widder, An Introduction to Transform Theory, Academic Press, New York, 1971.

[25]   B. Yilmaz and M. A. Ozarslan, Frobenius-Euler and Frobenius-Genocchi polynomials and their differential equation, New Trends Math. Sci. 3(2015), 172–180.