Applications Poisson Distribution and Ruscheweyh Derivative Operator for Bi-Univalent Functions


Download PDF

Authors: A. K. WANAS AND J. SOKół

DOI: 10.46793/KgJMat2401.089W

Abstract:

In this paper we establish upper bounds for the second and third coefficients of holomorphic and bi-univalent functions in a new family which involve the Bazilevič functions and β-pseudo-starlike functions under a new operator joining Poisson distribution with Ruscheweyh derivative operator. Also, we discuss Fekete-Szegö problem of functions in this family.



Keywords:

Bi-univalent function, (M,N)-Lucas polynomial, coefficient bound, Fekete-Szegö problem, Poisson distribution, subordination, Ruscheweyh derivative.



References:

[1]   K. O. Babalola, On λ-pseudo-starlike functions, J. Class. Anal. 3(2) (2013), 137–147. https://doi.org//10.7153/jca-03-12

[2]   M. Caglar, E. Deniz and H. M. Srivastava, Second Hankel determinant for certain subclasses of bi-univalent functions, Turkish J. Math. 41 (2017), 694–706. https://doi.org/10.3906/mat-1602-25

[3]   P. L. Duren, Univalent Functions, Springer Verlag, New York, Berlin, Heidelberg, Tokyo, 1983.

[4]   P. Filipponi and A. F. Horadam, Derivative sequences of Fibonacci and Lucas polynomials, Applications of Fibonacci Numbers 4 (1991), 99–108. https://doi.org/10.1007/978-94-011-3586-3_12

[5]   B. A. Frasin and M. K. Aouf, New subclasses of bi-univalent functions, Appl. Math. Lett. 24 (2011), 1569–1573. https://doi.org//10.1016/j.aml.2011.03.048

[6]   S. P. Goyal and P. Goswami, Estimate for initial Maclaurin coefficients of bi-univalent functions for a class defined by fractional derivatives, J. Egyptian Math. Soc. 20 (2012), 179–182. https://doi.org//10.1016/j.joems.2012.08.020

[7]   F. R. Keogh and E. P. Merkes, A coefficient inequality for certain classes of analytic functions, Proc. Amer. Math. Soc. 20 (1969), 8–12. https://doi.org//10.2307/2035949

[8]   G. Y. Lee and M. Asci, Some properties of the (p,q)-Fibonacci and (p,q)-Lucas polynomials, J. Appl. Math. 2012, Article ID 264842. https://doi.org/10.1155/2012/264842

[9]   A. Lupas, A guide of Fibonacci and Lucas polynomials, Octogon Mathematical Magazine 7 (1999), 2–12.

[10]   S. S. Miller and P. T. Mocanu, Differential Subordinations: Theory and Applications, Series on Monographs and Textbooks in Pure and Applied Mathematics 225, Marcel Dekker Inc., New York, Basel, 2000.

[11]   S. Porwal, An application of a Poisson distribution series on certain analytic functions, J. Complex Anal. 2014 (2014), Article ID 984135, 1–3. https://doi.org/10.1155/2014/984135

[12]   S. Porwal and M. Kumar, A unified study on starlike and convex functions associated with Poisson distribution series, Afrika Math. 27 (2016), 1021–1027. https://doi.org/10.1007/s13370-016-0398-z

[13]   S. Ruscheweyh, New criteria for univalent functions, Proc. Amer. Math. Soc. 49 (1975), 109–115. https://doi.org/10.2307/2039801

[14]   R. Singh, On Bazilevič functions, Proc. Amer. Math. Soc. 38(2) (1973), 261–271. https://doi.org/10.1090/S0002-9939-1973-0311887-9

[15]   H. M. Srivastava and D. Bansal, Coefficient estimates for a subclass of analytic and bi-univalent functions, J. Egyptian Math. Soc. 23 (2015), 242–246. https://doi.org//10.1016/j.joems.2014.04.002

[16]   H. M. Srivastava, S. S. Eker and R. M. Ali, Coefficient bounds for a certain class of analytic and bi-univalent functions, Filomat 29 (2015), 1839–1845. https://doi.org/10.2298/FIL1508839S

[17]   H. M. Srivastava, S. S. Eker, S. G. Hamidi and J. M. Jahangiri, Faber polynomial coefficient estimates for bi-univalent functions defined by the Tremblay fractional derivative operator, Bull. Iranian Math. Soc. 44(1) (2018), 149–157. https://doi.org/10.1007/s41980-018-0011-3

[18]   H. M. Srivastava, S. Gaboury and F. Ghanim, Coefficient estimates for some general subclasses of analytic and bi-univalent functions, Afrika Math. 28 (2017), 693–706. https://doi.org/10.1007/s13370-016-0478-0

[19]   H. M. Srivastava, A. K. Mishra and P. Gochhayat, Certain subclasses of analytic and bi-univalent functions, Appl. Math. Lett. 23 (2010), 1188–1192. https://doi.org/10.1016/j.aml.2010.05.009

[20]   A. K. Wanas and A. L. Alina, Applications of Horadam polynomials on Bazilevič bi-univalent function satisfying subordinate conditions, Journal of Physics: Conference Series 1294 (2019), 1–6. https://doi.org/10.1088/1742-6596/1294/3/032003

[21]   T. Wang and W. Zhang, Some identities involving Fibonacci, Lucas polynomials and their applications, Bull. Math. Soc. Sci. Math. Roumanie 55 (2012), 95–103. https://doi.org/10.3390/math6120334