Some Properties of New Hypergeometric Functions in Four Variables
Download PDF
Authors: M. G. BIN-SAAD, J. A. YOUNIS AND K. S. NISAR
DOI: 10.46793/KgJMat2401.145BS
Abstract:
In this paper, we introduce ten new quadruple hypergeometric series. We also obtain their various properties such that integral representations, fractional derivatives, N-fractional connections, operational relations and generating functions.
Keywords:
Gamma functions, Laplace-type integrals, fractional derivatives, N-fractional operator, operational relations, generating fnctions, Exton’s functions, quadruple hypergeometric series.
References:
[1] P. Agarwal, J. Choi and S. Jain, Extended hypergeometric functions of two and three varaibles, Commun. Korean Math. Soc. 30 (2015), 403–414. https://doi.org/10.4134/CKMS.2015.30.4.403
[2] D. Baleanu, P. Agarwal, R. K. Parmar, M. M. Alqurashi and S. Salahshour, Extension of the fractional derivative operator of the Riemann-Liouville, J. Nonlinear Sci. Appl. 10 (2017), 2914–2924. http://dx.doi.org/10.22436/jnsa.010.06.06
[3] M. G. Bin-Saad, Symbolic operational images and decomposition formulas of hypergeometric functions, J. Math. Anal. Appl. 376(2) (2011), 451–468. https://doi.org/10.1016/j.jmaa.2010.10.073
[4] M. G. Bin-Saad, Relations among certain generalized hypergeometric functions suggested by N-fractional calculus, Math. Letters 2 (2016), 47–57. https://doi.org/10.11648/j.ml.20160206.12
[5] M. G. Bin-Saad and J. A. Younis, Certain integrals associated with hypergeometric functions of four variables, Earthline J. Math. Sci. 2 (2019), 325–341. https://doi.org/10.34198/ejms.2219.325341
[6] M. G. Bin-Saad and J. A. Younis, Certain generating functions of some quadruple hypergeometric series, Eurasian Bulletin Math. 2 (2019), 56–62.
[7] M. G. Bin-Saad, J. A. Younis and R. Aktas, Integral representations for certain quadruple hypergeometric series, Far East J. Math. Sci. 103 (2018), 21–44.
[8] M. G. Bin-Saad, J. A. Younis and R. Aktas, New quadruple hypergeometric series and their integral representations, Sarajevo Math. J. 14 (2018), 45–57. https://doi.org/10.5644/SJM.14.1-05
[9] P. Deepthi, J. C. Prajapati and A. K. Rathie, New Laplace transforms of the 2F2 hypergeometric function, J. Fract. Calc. Appl. 8 (2017), 150–155. http://fcag-egypt.com/Journals/JFCA/
[10] H. Exton, Hypergeometric functions of three variables, J. Indian Acad. Math. 4 (1982), 113–119.
[11] S. Jun, I. Kim and A. K. Rathie, On a new class of Eulerian’s type integrals involving generalized hypergeometric functions, Aust. J. Math. Anal. Appl. 16 (2019), 1–15.
[12] W. Koepf, I. Kim and A. K. Rathie, On a new class of Laplace-type integrals involving generalized hypergeometric functions, Axioms 8(87) (2019), 21 pages. https://doi.org/10.3390/axioms8030087
[13] G. Lauricella, Sull funzioni ipergeometric a più variabili, Rend. Cric. Mat. Palermo 7 (1893), 111–158. https://doi.org/10.1007/BF03012437
[14] M.-J. Luo, G. V. Milovanović and P. Agarwal, Some results on the extended beta and extended hypergeometric functions, Appl. Math. Comput. 248(2014), 631–651. https://doi.org/10.1016/j.amc.2014.09.110
[15] M. Masjed-Jamei and W. Koepf, Some summation theorems for generalized hypergeometric functions, Axioms 7(2) (2018), 20 pages. https://doi.org/10.3390/axioms7020038
[16] K. S. Miller and B. Ross, An Introduction to Fractional Calculus and Fractional Differential Equations, Wiley, New York, 1993.
[17] E. Özergin, Some properties of hypergeometric functions, Ph.D. Thesis, Eastern Mediterranean University, North Cyprus, 2011.
[18] M. A. Özarslan and E. Özergin, Some generating relations for extended hypergeometric functions via generalized fractional derivative operator, Math. Comput. Model. 52 (2010), 1825–1833. https://doi.org/10.1016/j.mcm.2010.07.011
[19] R. K. Parmar, Some generating relations for generalized extended hypergeometric functions involving generalized fractional derivative operator, J. Concr. Appl. Math. 12 (2014), 217–228.
[20] B. Ross, Fractional Calculus and its Applications, Proceedings of the International Conference held at the University of New Haven, June 1974, Lecture Notes in Mathematics 457, Springer-Verlag, 1975.
[21] M. Shadab and J. Choi, Extensions of Appell and Lauricella hypergeometric functions, Far East J. Math. Sci. 102 (2017), 1301–1317. http://dx.doi.org/10.17654/MS102061301
[22] M. Singh, S. Pundhir and M. P. Singh, Generating function of certain hypergeometric functions by means of fractional calculus, International J. Comput. Eng. Res. 7 (2017), 40–47.
[23] H. M. Srivastava and P. W. Karlsson, Multiple Gaussian Hypergeometric Series, Ellis Horwood Lt1., Chichester, 1984.
[24] H. M. Srivastava and H. L. Manocha, A Treatise on Generating Functions, Halsted Press, Bristone, London, New York, Toronto, 1985.
[25] H. M. Srivastava, A. Cetinkaya and I. O. Kiymaz, A certain generalized Pochhammer symbol and its applications to hypergeometric functions, Appl. Math. Comput. 226 (2014), 484–491. https://doi.org/10.1016/j.amc.2013.10.032
[26] J. A. Younis and M. G. Bin-Saad, Integral representations involving new hypergeometric functions of four variables, J. Frac. Calc. Appl. 10 (2019), 77–91. http://math-frac.oreg/Journals/JFCA/