Identities with Multiplicative Generalized $(\alpha,\alpha)$-Derivations of Semiprime Rings
Download PDF
Authors: G. S. SANDHU, A. AYRAN AND N. AYDIN
DOI: 10.46793/KgJMat2403.365S
Abstract:
Let R be a semiprime ring and α be an automorphism of R. A mapping F : R → R (not necessarily additive) is called multiplicative generalized (α,α)-derivation if there exists a unique (α,α)-derivation d of R such that F(xy) = F(x)α(y) + α(x)d(y) for all x,y ∈ R. In the present paper, we intend to study several algebraic identities involving multiplicative generalized (α,α)-derivations on appropriate subsets of semiprime rings and collect the information about the commutative structure of these rings.
Keywords:
Semiprime ring, multiplicative generalized (α,α)-derivation, (α,α)-derivation, automorphism.
References:
[1] S. Ali, B. Dhara, N. A. Dar and A. N. Khan, On Lie ideals with multiplicative (generalized)-derivations in prime and semiprime rings, Beitr Algebra Geom. 56 (2015), 325–337. https://doi.org/10.1007/s13366-013-0186-y
[2] M. J. Atteya, On generalized derivations of semiprime rings, Internat. J. Algebra 4(12) (2010), 591–598.
[3] H. E. Bell, Some commutativity results involving derivations, in: S. T. Rizvi and S. M. A. Zaidi (Eds.), Trends in Theory of Rings and Modules, Anamaya Publisher, New Delhi, India, 2005.
[4] H. E. Bell and W. S. Martindale III, Centralizing mappings of semiprime rings, Canad. Math. Bull. 30(1) (1987), 92–101. https://doi.org/10.4153/CMB-1987-014-x
[5] M. Brešar and J. Vukman, Orthogonal derivations and extension of a theorem of Posner, Rad. Mat. 5 (1989), 237–246.
[6] M. Brešar, On the distance of the composition of two derivations to the generalized derivations, Glasgow Math. J. 33 (1991), 89–93. https://doi.org/10.1017/S0017089500008077
[7] M. N. Daif and H. E. Bell, Remarks on derivations of semiprime rings, Int. J. Math. Math. Sci. 15(1) (1992), 205–206. https://doi.org/10.1155/S0161171292000255
[8] B. Dhara, Generalized derivations acting as a homomorphism or anti-homomorphism in semiprime rings, Beitr Algebra Geom. 53 (2012), 203–209. https://doi.org/10.1007/s13366-011-0051-9
[9] B. Dhara, S. Ali and A. Pattanayak, Identities with generalized derivations in semiprime rings, Demo. Math. XLVI(3) (2013), 453–460. https://doi.org/10.1515/dema-2013-0471
[10] B. Dhara and M. R. Mozumder, Some identities involving multiplicative generalized derivations in prime and semiprime rings, Bol. Soc. Parana. Mat. 36(3) (2018), 25–36. https://doi.org/10.5269/bspm.v36i1.30822
[11] N. Divinsky, Rings and Radicals, University of Toronto Press, Toronto, 1965.
[12] A. Fošner, M. Fošner and J. Vukman, Identities with derivations in rings, Glasnik Mate. 46(66) (2011), 339–349.
[13] I. N. Herstein, Rings with Involution, University of Chicago Press, Chicago, 1976.
[14] D. Kumar and G. S. Sandhu, On multiplicative (generalized)-derivations in semiprime rings, Internat. J. Pure Appl. Math. 106(1) (2016), 249–257. https://doi.org/10.12732/ijpam.v106i1.19
[15] E. C. Posner, Derivations in prime rings, Proc. Amer. Math. Soc. 8(6) (1957), 1093–1100. https://doi.org/10.2307/2032686
[16] S. K. Tiwari, R. K. Sharma and B. Dhara, Multiplicative (generalized)-derivations in semiprime rings, Beitr Algebra Geom. 58(1) (2017), 211–225. https://doi.org/10.1007/s13366-015-0279-x
[17] S. K. Tiwari and R. K. Sharma, On Lie ideals with generalized (α,α)-derivations in prime rings, Rend. Circ. Mat. Palermo (2) 67(1) (2018), 493–499. https://doi.org/10.1007/s12215-018-0329-y