A New Fixed Point Result in Graphical $b_{v}(s)$-Metric Space with Application to Differential Equation


Download PDF

Authors: P. BARADOL, D. GOPAL AND N. DAMLJANOVIć

DOI: 10.46793/KgJMat2403.441B

Abstract:

In the present paper, motivated by [??], first we give a notion of graphical bv(s)-metric space, which is a graphical version of bv(s)-metric space. Utilizing the graphical Banach contraction mapping we prove fixed point results in graphical bv(s)-metric space. Appropriate examples are also presented to support our results. In the end, the main result ensures the existence of a solution for an ordinary differential equation along with its boundary conditions by using the fixed point result in graphical bv(s)-metric space.



Keywords:

Graph, fixed point, graphical bv(s) metric, graphic Banach contraction.



References:

[1]   S. Aleksić, H. Huang, Z. D. Mitrović and S. Radenović, Remarks on some fixed point results in b-metric spaces, J. Fixed Point Theory Appl. 20(4) (2018), Article ID 147, 17 pages. https://doi.org/10.1007/s11784-018-0626-2

[2]   I. A. Bakhtin, The contraction mapping principle in quasimetric spaces, Funct. Anal. Ulianowsk Gos. Ped. Inst. 30 (1989), 26–37.

[3]   S. Banach, Sur les opérations dans les ensembles abstraits et leur application aux équations intégrales, Fund. Math. 3 (1922), 133–181.

[4]   P. Baradol, D. Gopal and S. Radenović, Computational fixed points in graphical rectangular metric spaces with application, J. Comput. Appl. Math. 375 (2020), Article ID 112805, 12 pages. https://doi.org/10.1016/j.cam.2020.112805

[5]   P. Baradol, J. Vujaković, D. Gopal and S. Radenović, On some new results in graphical rectangular b-metric spaces, Mathematics 8(4) (2020), Article ID 488, 17 pages. https://doi.org/10.3390/math8040488

[6]   A. Branciari, A fixed point theorem of Banach-Caccioppoli type on a class of generalized metric spaces, Publ. Math. Debrecen 57(1–2) (2000), 31–37. http://dx.doi.org/10.12988/imf.2014.4227

[7]   D. W. Boyd and J. S. Wong, On nonlinear contractions, Proc. Amer. Math. Soc. 20(2) (1969), 458–464. https://doi.org/10.1090/S0002-9939-1969-0239559-9

[8]   J. Caristi, Fixed point theorems for mappings satisfying inwardness conditions, Trans. Amer. Math. Soc. 215 (1976), 241–251. https://doi.org/10.1090/S0002-9947-1976-0394329-4

[9]   N. Chuensupantharat, P. Kumam, V. Chauhan, D. Singh and R. Menon, Graphic contraction mappings via graphical b-metric spaces with applications, Bull. Malays. Math. Sci. Soc. 42 (2019), 3149–3165. https://doi.org/10.1007/s40840-018-0651-8

[10]   Lj. B. Ćirić, A generalization of Banach’s contraction principle, Proc. Amer. Math. Soc. 45(2) (1974), 267–273. https://doi.org/10.2307/2040075

[11]   S. Czerwik, Contraction mappings in b-metric spaces, Acta Mathematica et Informatica Universitatis Ostraviensis 1 (1993), 5–11.

[12]   J. Jachymski, Equivalence of some contractivity properties over metrical structures, Proc. Amer. Math. Soc. 125(8) (1997), 2327–2335.

[13]    Z. Mitrović and S. Radenović, The Banach and Reich contractions in bv(s)-metric spaces, J. Fixed Point Theory Appl. 19(4) (2017), 3087–3095. https://doi.org/10.1007/s11784-017-0469-2

[14]   B. Samet, C. Vetro and P. Vetro, Fixed point theorems for α-ψ-contractive type mappings, Nonlinear Anal. 75(4) (2012), 2154–2165. https://doi.org/10.1016/j.na.2011.10.014

[15]   S. Shukla, S. Radenović and C. Vetro, Graphical metric space: a generalized setting in fixed point theory. Rev. R. Acad. Cienc. Exactas Fis. Nat. Ser. A Mat. RACSAM 111(3) (2017), 641–655. https://doi.org/10.1007/s13398-016-0316-0

[16]   S. Shukla, N. Mlaiki and H. Aydi, On (G,G)-Prešić–Ćirić operators in graphical metric spaces, Mathematics 7(5) (2019), Article ID 445, 12 pages. https://doi.org/10.3390/math7050445

[17]   M. Younis, D. Singh and A. Goyal, A novel approach of graphical rectangular b-metric spaces with an application to the vibrations of a vertical heavy hanging cable, J. Fixed Point Theory Appl. 21(1) (2019), Article ID 3317 pages, https://doi.org/10.1007/s11784-019-0673-3