Certain Properties on Meromorphic Functions Defined by a New Linear Operator Involving the Mittag-Leffler Function
Download PDF
Authors: A. K. AL-KHAFAJI AND A. K. WANAS
DOI: 10.46793/KgJMat2403.473AK
Abstract:
Our paper introduces a new linear operator using the convolution between a Mittag–Leffler Function and basic hypergeometric function. Use of the linear operator creates a new class of meromorphic functions defined in the punctured open unit disk. Consequently, the paper examines different aspects Apps and assets like, extreme points, coefficient inequality, growth and distortion. In conclusion, the work discusses modified Hadamard product and closure theorems.
Keywords:
Linear operator, basic hypergeometric function, meromorphic function, Mittag–Leffler function, coefficient inequality, convex linear combination, growth and distortion theorem, extreme points, Hadamard product.
References:
[1] H. Aldweby and M. Darus, Integral operator defined by q-analogue of Liu-Srivastava operator, Stud. Univ. Babeş-Bolyai Math. 58(4) (2013), 529–537.
[2] A. Apelblat Differentiation of the Mittag-Leffler functions with respect to parameters in the Laplace transform approach, Mathematics 8(5) (2020), Article ID 657, 22 pages. https://doi.org/10.3390/math8050657
[3] R. Asadi, A. Ebadian, S. Shams and J. Sokół, On a certain classes of meromorphic functions with positive coefficients, Appl. Math. J. Chinese Univ. 34(3) (2019), 253–260. https://doi.org/10.1007/s11766-019-3432-8
[4] A. Attiya, Some applications of Mittag-Leffler function in the unit disk, Filomat 30(7) (2016), 2075–2081. https://doi.org/10.2298/FIL1607075A
[5] D. Bansal and J. K. Prajapat, Certain geometric properties of the Mittag-Leffler functions, Complex Var. Elliptic Equ. 61(3) (2016), 338–350. https://doi.org/10.1080/17476933.2015.1079628
[6] A. Ebadian, N. E. Cho, E. A. Adegani and S. Yalçin, New criteria for meromorphic starlikeness and close-to-convexity, Mathematics 8(5) (2020). https://doi.org/10.3390/math8050847
[7] S. Elhaddad and M. Darus, On meromorphic functions defined by a new operator containing the Mittag-Leffler function, Symmetry 11(2) (2019), Article ID 210, 11 pages. https://doi.org/10.3390/sym11020210
[8] S. Elhaddad and M. Darus, Certain properties on analytic p-valent functions, Int. J. Math. Comput. Sci. 15(1) (2020), 433–442.
[9] H. Exton, q-Hypergeometric Functions and Applications, Ellis Horwood Series, Mathematics and Its Applications, Ellis Horwood, Chichester, UK, 1983.
[10] M. R. Ganigi and B. A. Uralegaddi, New criteria for meromorphic univalent functions, Bulletin Mathématique dela Société des Sciences Mathématiques de la République Socialiste de Roumanie Nouvelle Séerie 33 (1989), 9–13.
[11] G. Gasper and M. Rahman, Basic Hypergeometric Series, Cambridge University Press, Cambridge, UK, 1990.
[12] J. L. Liu, New applications of the Srivastava-Tomovski generalization of the Mittag-Leffler function, Iran. J. Sci. Technol. Trans. A Sci. 43(2) (2019), 519–524. https://doi.org/10.1007/s40995-017-0409-4
[13] J. L. Liu and H. M. Srivastava, A linear operator and associated families of meromorphically multivalent functions, J. Math. Anal. Appl. 259 (2001), 566–581. https://doi.org/10.1006/jmaa.2000.7430
[14] J. L. Liu and H. M. Srivastava, Classes of meromorphically multivalent functions associated with the generalized hypergeometric function, Math. Comput. Model. 39 (2004), 21–34. https://doi.org/10.1016/S0895-7177(03)00391-1
[15] T. Mahmood, M. Naeem, S. Hussain, S. Kjan, and Ş. Altınkaya, A subclass of analytic functions defined by using Mittag-Leffler function, Honam Math. J. 42(3) (2020), 577–590. https://doi.org/10.5831/HMJ.2020.42.3.577
[16] G. M. Mittag-Leffler, Sur la representation analytique d’une branche uniforme d’une function monogene, Acta Math. 29 (1905), 101–181.
[17] G. M. Mittag-Leffler, Sur la nouvelle function Eα(x), Comptes Rendus de l’Académie des Sciences 137(2) (1903), 554–558.
[18] G. Murugusundaramoorthy and T. Janani, Meromorphic parabolic starlike functions associated with-hypergeometric series, International Scholarly Research Notices 2014 (2014), Article ID 923607, 9 pages. https://doi.org/10.1155/2014/923607
[19] J. K. Prajapat, S. Maharana and D. Bansal, Radius of starlikeness and Hardy space of Mittag-Leffler functions, Filomat 32(18) (2018), 6475–6486. https://doi.org/10.2298/FIL1818475P
[20] R. S. Qahtan, H. Shamsan and S. Latha, Some subclasses of meromorphic with p-Valent q-Spirallike functions, International Journal of Mathematical Combinatorics 4 (2019), 19–28.
[21] D. Răducanu, On partial sums of normalized Mittag-Leffler functions, Analele Universitatii Ovidius Constanta-Seria Matematica 25(2) (2017), 123–133. https://doi.org/10.1515/auom-2017-0024
[22] D. Răducanu, Third-order differential subordinations for analytic functions associated with generalized Mittag-Leffler functions, Mediterr. J. Math. 14(4) (2017), Article ID 167, 18 pages. https://doi.org/10.1007/s00009-017-0969-8
[23] H. Rehman, M. Darus and J. Salah, Coefficient properties involving the generalized k-Mittag-Leffler functions, Transylvanian Journal of Mathematics and Mechanics 9 (2017), 155–164.
[24] H. M. Srivastava, N. Khan, M. Darus, S. Khan, Q. Z. Ahmad and S. Hussain, Fekete-Szegö type problems and their applications for a subclass of q-starlike functions with respect to symmetrical points, Mathematics 8(5) (2020), Article ID 842, 18 pages. https://doi.org/10.3390/math8050842
[25] H. M. Srivastava, Some generalizations and basic (or q-)extensions of the Bernoulli, Euler and Genocchi polynomials, Appl. Math. Inform. Sci. 5(3) (2011), 390–444.
[26] A. Wiman, Über den fundamentalsatz in der teorie der funktionen ea(x), Acta Math. 29 (1905), 191–201.
[27] Y. H. Xu and J. L. Liu. Convolution and partial sums of certain multivalent analytic functions involving Srivastava-Tomovski generalization of the Mittag-Leffler function, Symmetry 10(11) (2018), Article ID 597, 8 pages. https://doi.org/10.3390/sym10110597
[28] C. Yan and J. Liu, A family of meromorphic functions involving generalized Mittag-Leffler function, J. Math. Inequal. 12(4) (2018), 943–951. https://doi.org/10.7153/jmi-2018-12-71
[29] D. Yang, On a class of meromorphic starlike multivalent functions, Bull. Inst. Math. Acad. Sin. 24 (1996), 151–157.
[30] A. Zireh and S. Salehian, Initial coefficient bounds for certain class of meromorphic bi-univalent functions, Acta Univ. Sapientiae Math. 11(1) (2019), 234–245. https://doi.org/10.2478/ausm-2019-0018