Prabhakar and Hilfer-Prabhakar Fractional Derivatives in the Setting of $\Psi$-Fractional Calculus and Its Applications
Download PDF
Authors: S. K. MAGAR, P. V. DOLE AND K. P. GHADLE
DOI: 10.46793/KgJMat2404.515M
Abstract:
The aim of this paper is to study to fractional calculus for class of Ψ function. The present study is designed to study generalized fractional derivatives and find their generalized transforms called Ψ-Laplace transform and Ψ-Sumudu transform. Moreover, find the analytical solutions of some applications in physics the form of generalized fractional derivatives by transform technique.
Keywords:
Ψ-Fractional calculus, fractional calculus, k-Prabhakar derivative, k-Hilfer-Prabhakar derivative, k-Mittag-Leffler function, generalized integral transforms.
References:
[1] R. A. Almeida, Caputo fractional derivative of a function with respect to another function, Commun. Nonlinear Sci Numer. Simul. 44 (2017), 460–481. https://doi.org/10.1016/j.cnsns.2016.09.006
[2] M. Caputo, Linear model of model of dissipation whose q is almost frequency independent-II, Geophysical Journal International 13 (1967), 529–539. https://doi.org/10.1111/j.1365-246X.1967.tb02303.x
[3] L. Debnath and D. Bhatta, Integral Transforms and Their Applications, 2nd Ed., Chapman and Hall/CRC, 2007. https://doi.org/10.1201/9781420010916
[4] R. Diaz and E. Pariguan, On hypergeometric functions and k-Pochammer symbol, Divulgaciones Matematica 15(2) (2007), 179–192.
[5] G. A. Dorrego and R. A. Cerutti, The k-Mittag-Leffler Function, International Journal of Contemporary Mathematical Sciences 7(15) (2012), 705–716.
[6] G. A. Dorrego and R. A. Cerutti, The k-Fractional Hilfer Derivative, IInternational Journal of Mathematical Analysis 7(11) (2013), 543–550. http://dx.doi.org/10.12988/ijma.2013.13051
[7] G. A. Dorrego, Generalized Riemann-Liouville fractional operators associated with a generalization of the Prabhakar integral operator, Progress in Fractional Differentiation and Applications 2(2) (2016), 131–140. http://dx.doi.org/10.18576/pfda/020206
[8] A. A. Kilbas, H. M. Srivastava and J. J. Trujillo, Theory and Applications of Fractional Differential Equations, Elsevier (North-Holland) Science Publishers, Amsterdam, London, New York. https://doi.org/10.1016/S0304-0208(06)80003-4
[9] H. M. Fahad, M. Rehaman and A. Fernandez, On Laplace transforms with respect to functions and their applications to fractional differential equations, arXiv:1907.04541v2 [math.CA] 10 Aug 2020.
[10] S. G. Samko, A. A. Kilbas and O. I. Marichev, Fractional Integrals and Derivatives. Theory and Applicatios, Gordon and Breach, New York, 1993.
[11] J. D. V. Sousa and E. C. de Oliveira, On the Ψ-Hilfer fractional derivative, Commun. Nonlinear Sci. Numer. Simul. 60 (2018), 72–91. https://doi.org/10.1016/j.cnsns.2018.01.005
[12] R. Garra, R. Gorenflo, F. Polito and Z. Tomovski, Hilfer-Prabhakar derivative and some applications, Appl. Math. Comput. 242 (2014), 576–589. http://dx.doi.org/10.1016/j.amc.2014.05.129
[13] R. Hilfer, Applications of Fractional Calculus in Physics, Word Scientific, Singapore, 2000. https://doi.org/10.1142/3779
[14] A. A. Kilbas, M. Saigo and R. K. Saxena, Generalized Mittag-Leffler function and generalized fractional calculus operators, Integral Transforms Spec. Funct. 15(1) (2004), 31–49. https://doi.org/10.1080/10652460310001600717
[15] S. K. Panchal, A. D. Khandagale and P. V. Dole, Sumudu transform of Hilfer-Prabhakar fractional derivatives with applications, Proceeding of National Conference on Recent Trends in Mathematics 1 (2016), 60–66.
[16] S. K. Panchal, P. V. Dole and A. D. Khandagale, k-Hilfer-Prabhakar fractional derivatives and its applications, Indian J. Math. 59(3) (2017), 367–383.
[17] T. R. Prabhakar, A singular integral equation with a generalized Mittag-Leffler function in the kernel, Yokohama Math. J. 19 (1971), 7–15.
[18] I. Podlubny, Fractional Differential Equations, Academy Press, San-Diego, 1999. https://doi.org/10.1016/S0076-5392(99)80021-6
[19] I. N. Sneddon, The Use of Integral Transforms, McGraw-Hill International Editions, New York, 1972.
[20] X. J. Yang, A new integral transform with an application in heat-transfer, Thermal Science 20(3) (2016), 677–681. https://doi.org/10.2298/TSCI16S3677Y