On the Initial Value Problem for Fuzzy Nonlinear Fractional Differential Equations
Download PDF
Authors: A. EL MFADEL, S. MELLIANI AND M. ELOMARI
DOI: 10.46793/KgJMat2404.547M
Abstract:
In this paper, we study the existence result of solutions for fuzzy nonlinear fractional differential equations involving Caputo differentiability of an arbitrary order 0 < q < 1. As application, an example is included to show the applicability of our result.
Keywords:
Fuzzy numbers, fuzzy fractional integral, fuzzy fractional caputo derivative.
References:
[1] R. P. Agarwal, M. Belmekki and M. Benchohra, A survey on semilinear differential equations and inclusions involving Riemann-Liouville fractional derivative, Adv. Difference Equ. (2009). https://doi.org/10.1155/2009/981728
[2] R. P. Agarwal, V. Lakshmikantham and J. J. Nieto, On the concept of solution for fractional differential equations with uncertainty, Nonlinear Analysis: Theory, Methods and Applications 72(6), (2010), 2859–2862.
[3] R. P. Agarwal, Y. Zhou, J. Wang and X. Luo, Fractional functional differential equations with causal operators in Banach spaces, Mathematical and Compututer Modelling 54(5–6) (2011), 1440–1452.
[4] S. Arshad and V. Lupulescua, On the fractional differential equations with uncertainty, Nonlinear Analysis 74(2) (2011), 3685–3693, https://doi.org/10.1016/j.na.2011.02.048
[5] P. Diamond and P. E. Kloeden, Metric spaces of fuzzy sets, Fuzzy Sets and Systems 35(2) (1990), 241–250, https://doi.org/10.1016/0165-0114(90)90197-E
[6] J. Dieudonné, Deux exemples singuliers d’équations différentielles, Acta Scientiarum Mathematicarum 12(6) (1950), 38–40.
[7] D. Dubois and H. Prade, Fuzzy Sets and Systems: Theory and Applications, Academic Press, New York, 1980. https://doi.org/10.1057/jors.1982.38.
[8] M. Friedmana and A. Kandel, Numerical solutions of fuzzy differential and integral equations, Fuzzy Sets Systems 106(1) (1999), 35–48. https://doi.org/10.1016/S0165-0114(98)00355-8
[9] N. V. Hoa, V. Lupulescu and D. O’Regan, A note on initial value problems for fractional fuzzy differential equations, Fuzzy Sets and Systems 347(2) (2018), 54–69. https://doi.org/10.1016/j.fss.2017.10.002
[10] O. Kaleva, Fuzzy differential equations, Fuzzy Sets and Systems 24(3) (1987), 301–317. https://doi.org/10.1016/0165-0114(87)90029-7
[11] A. Kilbas, H. M. Srivastava and J. J. Trujillo, Theory and Applications of Fractional Differential Equations, North-Holland Mathematical Studies 204, Elsevier Science, Oxford, United Kingdom, 2006.
[12] S. Lang, Analysis, Addison-Wesley, Reading, MA, 1969.
[13] H. T. Nguyen, A note on the extension principle for fuzzy sets, J. Math. Anal. Appl. 64(2) (1978), 369–380. https://doi.org/10.1016/0022-247X(78)90045-8
[14] M. L. Puri and D. A. Ralescu, The concept of normality for fuzzy random variables, Ann. Probab. 13(4) (1985), 1373–1379.
[15] M. L. Puri and D. A. Ralescu, Differential for fuzzy functions, J. Math. Anal. Appl. 91(3) (1983), 552–558.
[16] S. Salahshour, T. Allahviranloo, S. Abbasbandy and D. Baleanu, Existence and uniqueness results for fractional differential equations with uncertainty, Adv. Diff. Equ. 112(1) (2012), 1687–1847. https://doi.org/10.1186/1687-1847-2012-112
[17] S. Salahshour, T. Allahviranloo and S. Abbasbandy, Solving fuzzy fractional differential equations by fuzzy Laplace transforms, Communications in Nonlinear Science and Numerical Simulation 17(3) (2012), 1372–1381. https://doi.org/10.1016/j.cnsns.2011.07.005
[18] L. Zadeh, Fuzzy sets, Information and Control 3(1) (1965), 338–356.