A Coupled System of Nonlinear Langevin Fractional q- Difference Equations Associated with Two Different Fractional Orders in Banach Space
Download PDF
Authors: A. BOUTIARA
DOI: 10.46793/KgJMat2404.555B
Abstract:
In this research article, we study the coupled system of nonlinear Langevin fractional q-difference equations associated with two different fractional orders in Banach Space. The existence, uniqueness, and stability in the sense of Ulam are established for the proposed system. Our approach is based on the technique of measure of noncompactness combined with Mönch fixed point theorem, the implementation Banach contraction principle fixed point theorem, and the employment of Urs’s stability approach. Two examples illustrating the effectiveness of the theoretical results are presented.
Keywords:
Coupled fractional differential system, fractional q-derivative, fractional Langevin equation, Kuratowski measures of noncompactness, fixed point theorems, Banach space.
References:
[1] S. Abbas, M. Benchohra, B. Samet and Y. Zhou, Coupled implicit Caputo fractional q-difference systems, Adv. Difference Equ. 2019(1) (2019), 19 pages.
[2] M. S. Abdo, S. K. Panchal and H. A. Wahash, Ulam-Hyers-Mittag-Leffler stability for a ψ-Hilfer problem with fractional order and infinite delay, Results. Appl. Math. 7 (2020), 100–115. https://doi.org/10.1186/s13662-019-2433-5
[3] C. R. Adams, On the linear ordinary q-difference equation, Ann. Math. 30(1/4) (1928), 195–205. https://doi.org/10.2307/1968274
[4] R. P. Agarwal, M. Meehan and D. O’Regan, Fixed Point Theory and Applications, Cambridge Tracts in Math. 141, Cambridge University Press, Cambridge, 2001.
[5] R. P. Agarwal, Certain fractional q-integrals and q-derivatives, Mathematical Proceedings of the Cambridge Philosophical Society 66 (1969), 365–370. https://doi.org/10.1017/S0305004100045060
[6] B. Ahmad, J. J. Nieto, A. Alsaedi and H. Al-Hutami, Existence of solutions for nonlinear fractional q-difference integral equations with two fractional orders and nonlocal four-point boundary conditions, J. Franklin Inst. 351(5) (2014), 2890–2909. https://doi.org/10.1016/j.jfranklin.2014.01.020
[7] R. P. Agarwal, A. Alsaedi, B. Ahmad and H. Al-Hutami, Sequential fractional q-difference equations with nonlocal sub-strip boundary conditions, Dyn. Contin. Discret (I) 22 (2015), 1–12.
[8] B. Ahmad, J. J. Nieto, A. Alsaedi and H. Al-Hutami, Boundary value problems of nonlinear fractional q-difference (integral) equations with two fractional orders and four-point nonlocal integral boundary conditions, Filomat 28(8) (2014), 1719–1736.
[9] B. Ahmad, A. Alsaedi and H. Al-Hutami, A study of sequential fractional q-integro-difference equations with perturbed anti-periodic boundary conditions, Fractional Dynamics (2015), 110–128. https://doi.org/10.1515/9783110472097-007.
[10] B. Ahmad, S. K. Ntouyas and L. K. Purnaras, Existence results for nonlocal boundary value problems of nonlinear fractional q-difference equations, Adv. Difference Equ. (2012), Article ID 140. https://doi.org/10.1186/1687-1847-2012-140.
[11] B. Ahmad and J. J. Nieto, Solvability of nonlinear Langevin equation involving two fractional orders with Dirichlet boundary conditions, Int. J. Differ. Equ. (2010), 1–10. https://doi.org/10.1155/2010/649486
[12] B. Ahmad, J. J. Nieto, A. Alsaedi and M. El-Shahed, A study of nonlinear Langevin equation involving two fractional orders in different intervals, Nonlinear Analysis: Real World Applications 13(2) (2012), 599–606. https://doi.org/10.1016/j.nonrwa.2011.07.052
[13] M. H. Annaby and Z. S. Mansour, q-Fractional Calculus and Equations, Lecture Notes in Math. 2056, Springer-Verlag, Berlin, 2012.
[14] R. R. Akhmerov, M. I. Kamenskii, A. S. Patapov, A. E. Rodkina and B. N. Sadovskii, Measures of Noncompactness and Condensing Operators, Birkhauser Verlag, Basel, 1992.
[15] M. A. Almalahi, M. S. Abdo and S. K. Panchal, Existence and Ulam-Hyers-Mittag-Leffler stability results of ψ-Hilfer nonlocal Cauchy problem, Rend. Circ. Mat. Palermo (2) 2 (2020), 1–21. https://doi.org/10.1007/s12215-020-00484-8
[16] W. A. Al-Salam, q-Analogues of Cauchy’s formula, Proc. Amer. Math. Soc. 17 (1824), 1952–1953.
[17] W. A. Al-Salam, Some fractional q-integrals and q-derivatives, Proc. Edinb. Math. Soc. 15 (1969), 135–140.
[18] J. C. Alvàrez, Measure of noncompactness and fixed points of nonexpansive condensing mappings in locally convex spaces, Rev. R. Acad. Cienc. Exactas Fis. Nat. (Esp.) 79 (1985), 53–66.
[19] J. Banas and K. Goebel, Measures of Noncompactness in Banach Spaces, Lecture Notes in Pure. and Appl. Math., Marcel Dekker, New York, 1980.
[20] O. Baghani, On fractional Langevin equation involving two fractional orders, Commun. Nonlinear Sci. Numer. Simul. 42 (2017), 675–681. https://doi.org/10.1016/j.cnsns.2016.05.023
[21] M. Benchohra, J. R. Graef and S. Hamani, Existence results for boundary value problems with non-linear fractional differential equations, Appl. Anal. 87(7) (2008), 851–863. https://doi.org/10.1080/00036810802307579
[22] M. Benchohra, Z. Bouteffal, J. Henderson and S. Litimein, Measure of noncompactness and fractional integro-differential equations with state-dependent nonlocal conditions in Fréchet spaces, AIMS Math. 5 (2020), 15–25. https://doi.org/10.3934/math.2020002
[23] A. Boutiara, Multi-term fractional q-difference equations with q-integral boundary conditions via topological degree theory, Communications in Optimization Theory 2021 (2021), Article ID 1, 1–16. https://doi.org/10.23952/cot.2021.1
[24] A. Boutiara, M. Benbachir and K. Guerbati, Measure of noncompactness for nonlinear Hilfer fractional differential equation in Banach spaces, Ikonion Journal of Mathematics 1(2) (2019), 55–67.
[25] A. Boutiara, M. Benbachir and K. Guerbati, Caputo type fractional differential equation with nonlocal Erdélyi-Kober type integral boundary conditions in Banach spaces, Surv. Math. Appl. 15 (2020), 399–418.
[26] A. Boutiara, K. Guerbati and M. Benbachir, Caputo-Hadamard fractional differential equation with three-point boundary conditions in Banach spaces, AIMS Math. 5(1) (2020), 259–272. https://doi.org/10.3934/math.2020017
[27] A. Boutiara, S. Etemad, A. Hussain and S. Rezapour, The generalized U-H and U-H stability and existence analysis of a coupled hybrid system of integro-differential IVPs involving φ-Caputo fractional operators, Adv. Difference Equ. 95 (2021), 1–21. https://doi.org/10.1186/s13662-021-03253-8
[28] D. Chergui, T. E. Oussaeif and M. Ahcene, Existence and uniqueness of solutions for nonlinear fractional differential equations depending on lower-order derivative with non-separated type integral boundary conditions, AIMS Math. 4 (2019), 112–133. https://doi.org/10.3934/Math.2019.1.112
[29] R. D. Carmichael, The general theory of linear q-difference equations, Amer. J. Math. 34 (1912), 147–168.
[30] S. Etemad, S. K. Ntouyas and B. Ahmad, Existence theory for a fractional q-integro-difference equation with q-integral boundary conditions of different orders, Mathematics 7 (2019), Article ID 659. https://doi.org/10.3390/math7080659
[31] R. A. C. Ferreira, Nontrivial solutions for fractional q-difference boundary value problems, Electron. J. Qual. Theory Differ. Equ. (2010), Article ID 70.
[32] R. Hilfer, Applications of Fractional Calculus in Physics, World Scientific, Singapore, 2000.
[33] D. Hyers, On the stability of the linear functional equation, Proc Natl. Acad Sci. 27 (1941), 222–224.
[34] V. Kac and P. Cheung, Quantum Calculus, Springer, New York, 2002.
[35] A. A. Kilbas, H. M. Srivastava and J. J. Trujillo, Theory and Applications of Fractional Differential Equations, Elsevier Science B.V., Amsterdam, The Netherlands, 2006.
[36] P. Langevin, Sur la theorie du mouvement brownien (in French) [On the theory of Brownian motion], C. R. Math. Acad. Sci. Paris 146 (1908), 530–533.
[37] H. Mönch, Boundary value problems for nonlinear ordinary differential equations of second order in Banach spaces, Nonlinear Anal. 4 (1980), 985–999.
[38] K. S. Miller and B. Ross, An Introduction to Fractional Calculus and Fractional Differential Equations, Wiley, New York, NY, USA, 1993.
[39] K. B. Oldham, Fractional differential equations in electrochemistry, Advances in Engineering Software 41 (2010), 9–12.
[40] I. Podlubny, Fractional Differential Equations, Academic Press, San Diego, CA, USA, 1999.
[41] P. M. Rajković, S. D. Marinković and M. S. Stanković, Fractional integrals and derivatives in q-calculus, Appl. Anal. Discrete Math. 1 (2007), 311–323.
[42] J. V. D. C. Sousa and E. C. de Oliveira, On the Ulam-Hyers-Rassias stability for nonlinear fractional differential equations using the ψ-Hilfer operator, J. Fixed Point Theory Appl. 20(3) (2018), 1–21. https://doi.org/10.1007/s11784-018-0587-5
[43] S. Szufla, On the application of measure of noncompactness to existence theorems, Rend. Semin. Mat. Univ. Padova 75 (1986), 1–14.
[44] V. E. Tarasov, Fractional Dynamics: Application of Fractional Calculus to Dynamics of Particles, Fields and Media, Springer Science & Business Media, Berlin, Heidelberg, Germany, 2010.
[45] C. Torres, Existence of solution for fractional Langevin equation: Variational approach, Electron. J. Qual. Theory Differ. Equ. 54 (2014), 1–14.
[46] S. M. Ulam, A Collection of the Mathematical Problems, Interscience, New York, 1960.
[47] C. Urs, Coupled fixed point theorems and applications to periodic boundary value problems, Miskolc Math. Notes 14(1) (2013), 323–333. https://doi.org/10.18514/MMN.2013.598