Analytic Studies of a Class of Langevin Differential Equations Dominated by a Class of Julia Fractal Functions


Download PDF

Authors: R. W. IBRAHIM AND D. BALEANU

DOI: 10.46793/KgJMat2404.577I

Abstract:

In this investigation, we study a class of analytic functions of type Carathéodory style in the open unit disk connected with some fractal domains. This class of analytic functions is formulated based on a kind of Langevin differential equations (LDEs). We aim to study the analytic solvability of LDEs in the advantage of geometric function theory consuming the geometric properties of the Julia fractal (JF) and other fractal connected with the logarithmic function. The analytic solutions of the LDEs are obtainable by employing the subordination theory.



Keywords:

Subordination and superordination, analytic function, univalent function, open unit disk, fractal, fractional calculus, fractional operator.



References:

[1]   B. B. Mandelbrot, The Fractal Geometry of Nature, WH Freeman, New York, 1983.

[2]   J. Kigami, Analysis on Fractals, Cambridge University Press, Cambridge, 2001.

[3]   K. Falconer, Techniques in Fractal Geometry, John Wiley and Sons, Hoboken, New Jersey, 1997.

[4]   U. Freiberg and M. Zahle, Harmonic calculus on fractals-a measure geometric approach I, Potential Anal. 16(3) (2002), 265–277. https://doi.org/10.1023/A:1014085203265

[5]   R. S. Strichartz, Differential Equations on Fractals: A Tutorial, Princeton University Press, Princeton, New Jersey, 2006.

[6]   C. Cattani, Fractals and hidden symmetries in DNA, Math. Probl. Eng. 2010 (2010), 1–32. https://doi.org/10.1155/2010/507056

[7]   M. Rodriguez-Vallejo, D. Montagud, J. A. Monsoriu, V. Ferrando and W. D. Furlan, Relative peripheral myopia induced by fractal contact lenses, Current Eye Research 43(12) (2018), 1514–1521. https://doi.org/10.1080/02713683.2018.1507043

[8]   P. Chowdhury, N. Shivakumara, H. A. Jalab, R. W. Ibrahim, U. Pal and T. Lu, A new fractal series expansion based enhancement model for license plate recognition, Signal Processing: Image Communication 89 (2020), 1–12. https://doi.org/10.1016/j.image.2020.115958

[9]   M. T. Barlow and E. A. Perkins, Brownian motion on the Sierpinski gasket, Probability Theory and Related Fields 79(4) (1988), 543–623. https://doi.org/10.1007/BF00318785

[10]   A. S. Balankin, A continuum framework for mechanics of fractal materials I: From fractional space to continuum with fractal metric, Eur. Phys. J. B 88(4) (2015), 1–14. https://doi.org/10.1140/epjb/e2015-60189-y

[11]   M. Zubair, M. Mughal and Q. Naqvi, Electromagnetic Fields and Waves in Fractional Dimensional Space, Springer, New York, 2012.

[12]   L. Nottale and J. Schneider, Fractals and nonstandard analysis, J. Math. Phys. 25(5) (1998), 1296–1300. https://doi.org/10.1063/1.526285

[13]   K. M. Kolwankar and A. D. Gangal, Local fractional Fokker-Planck equation, Phys. Rev. Lett. 80(2) (1998), 1–4. https://doi.org/10.1103/PhysRevLett.80.214

[14]   R. A. El-Nabulsi, Path integral formulation of fractionally perturbed Lagrangian oscillators on fractal, J. Stat. Phys. 172(6) (2018), 1617–1640. https://doi.org/10.1007/s10955-018-2116-8

[15]   R. W. Ibrahim and D. Baleanu, Analytic solution of the Langevin differential equations dominated by a Multibrot fractal set, Fractal and Fractional 5(2) (2021), 1–16. https://doi.org/10.3390/fractalfract5020050

[16]   S. Das, Functional Fractional Calculus, Springer Science Business Media, Berlin, 2011.

[17]   I. Podlubny, Fractional Differential Equations, Academic Press, New York, 1999.

[18]   W. Chen, H. Sun, X. Zhang and K. Dean, Anomalous diffusion modeling by fractal and fractional derivatives, Comput. Math. Appl. 59 (2010), 1754–1758. https://doi.org/10.1016/j.camwa.2009.08.020

[19]   W. Sumelka and G. Voyiadjis, A hyperelastic fractional damage material model with memory, International Journal of Solids and Structures 124 (2017), 151–160. https://doi.org/10.1016/j.ijsolstr.2017.06.024

[20]   K. Golmankhaneh, On the fractal Langevin equation, Fractal and Fractional 3(1) (2019), 1–11. https://doi.org/10.3390/fractalfract3010011

[21]    R. W. Ibrahim, Analytic solutions of the generalized water wave dynamical equations based on time-space symmetric differential operator, Journal of Ocean Engineering and Science 5(2) (2020), 186–195. https://doi.org/10.1016/j.joes.2019.11.001

[22]   S. Seema and A. D. Gangal, Langevin equation on fractal curves, Fractals 24(3) (2016), 1–9. https://doi.org/10.1142/S0218348X16500286

[23]   S. Ahmed and B. Alghamdi, Multi-strip and multi-point Boundary conditions for fractional Langevin equation, Fractal and Fractional 4(2) (2020), 1–18. https://doi.org/10.3390/fractalfract4020018

[24]   F. Hossein, H. Sun and S. Aghchi, Existence of extremal solutions of fractional Langevin equation involving nonlinear boundary conditions, Int. J. Comput. Math. 2020 (2020), 1–10. https://doi.org/10.1080/00207160.2020.1720662

[25]   D. Rahmat, B. Agheli and J. J. Nieto, Langevin equation involving three fractional orders, J. Stat. Phys. 178(4) (2020), 986–995. https://doi.org/10.1007/s10955-019-02476-0

[26]   R. W. Ibrahim and D. Baleanu, Entire solutions of a class of algebraic Briot-Bouquet differential equations utilizing majority concept, Adv. Difference Equ. 2020(678) (2020), 1–12. https://doi.org/10.1186/s13662-020-03138-2

[27]   R. W. Ibrahim and D. Baleanu, Geometric behavior of a class of algebraic differential equations in a complex domain using a majorization concept, AIMS Mathematics 6(1) (2021), 806–820. https://doi:10.3934/math.2021049

[28]   G. Wallace and F. Lagugne-Labarthet, Advancements in fractal plasmonics: structures, optical properties, and applications, Analyst 144(1) (2019), 13–30. https://doi10.1039/C8AN01667D

[29]   A. Cherny, E. Anitas, V. Osipov and A. Kuklin, The structure of deterministic mass and surface fractals: theory and methods of analyzing small-angle scattering data, Physical Chemistry Chemical Physics 21(1) (2019), 12748–12762. https://doi.org/10.1039/C9CP00783K

[30]   J. Komjathy, R. Molontay and K. Simon, Transfinite fractal dimension of trees and hierarchical scale-free graphs, J. Complex Netw. 5(7) (2019), 764–791. https://doi.org/10.1093/comnet/cnz005

[31]   E. Vanden-Eijnden and G. Ciccotti, Second-order integrators for Langevin equations with holonomic constraints, Chemical Physics Letters 429(1) (2006), 310–316. https://doi.org/10.1016/j.cplett.2006.07.086

[32]   S. S. Miller and P. T. Mocanu. Differential Subordinations: Theory and Applications, CRC Press, 2000.

[33]    S. Lee, V. Ravichandran and S. Supramaniam, Initial coefficients of biunivalent functions, Abstr. Appl. Anal. 2014(640856) (2014), 1–15. https://doi.org/10.1155/2014/640856