Local K-Convoluted C-groups and Abstract Cauchy Problems
Download PDF
Authors: CHUNG-CHENG KUO
DOI: 10.46793/KgJMat2405.655K
Abstract:
We first present a new form of a local K-convoluted C-group on a Banach space X, and then deduce some basic properties of a nondegenerate local K-convoluted C-group on X and some generation theorems of local K-convoluted C-groups, which can be applied to obtain some equivalence relations between the generation of a nondegenerate local K-convoluted C-group on X with subgenerator A and the unique existence of solutions of the abstract Cauchy problem ACP(A,f,x).
Keywords:
Local K-convoluted C-group, generator, subgenerator, abstract Cauchy problem.
References:
[1] W. Arendt, C. J. K. Batty, H. Hieber and F. Neubrander, Vector-Valued Laplace Transforms and Cauchy Problems, Birkhauser, Verlag, 2001.
[2] R. deLaubenfels, Existence Families, Functional Calculi and Evolution Equations, Springer-Verlag, Berlin, 1994.
[3] M. Gao, Local C-semigroups and local C-cosine functions, Acta Math. Sci. Ser. B 19 (1999), 201–213. https://doi.org/10.1016/S0252-9602(17)30630-6
[4] J. E. Galé and P. J. Miana, One parameter groups of regular quasimultipliers, J. Funct. Anal. 237 (2006), 1–53. https://doi.org/10.1016/j.jfa.2006.03.021
[5] J. A. Goldstein, Semigroups of Linear Operators and Applications, Oxford, 1985.
[6] H. Kellerman and M. Hieber, Integrated semigroups, J Funct. Anal. 84 (1989), 160–180. https://doi.org/10.1016/0022-1236(89)90116-X
[7] M. Kostić, Distribution groups, Publ. Inst. Math. (Beograd) (N.S.) 85 (2009), 63–106. https://doi.org/10.2298/PIM0999063K
[8] M. Kostić, Generalized Semigroups and Cosine Functions, Mathematical Institute SANU, Belgrade, 2011.
[9] M. Kostić, Abstract Volterra Integro-Differential Equations, CRC Press, Boca Raton, 2015.
[10] M. Kostić, Abstract Degenerate Volterra Integro-Differential Equations, Mathematical Institute SANU, Belgrade, 2020.
[11] C.-C. Kuo, Perturbation theorems for local integrated semigroups, Studia Math. 197 (2010), 13–26. https://doi.org/10.4064/SM197-1-2
[12] C.-C. Kuo and S.-Y. Shaw, On α-timesi ntegrated C-semigroups and the abstract Cauchy problem, Studia Math. 142 (2000), 201–217. https://doi.org/10.4064/sm-142-3-201-217
[13] C.-C. Kuo, Local K-convoluted C-semigroups and abstract Cauchy problems, Taiwanese J. Math. 19 (2015), 1227–1245. https://doi.org/10.11650/tjm.19.2015.4737
[14] C.-C. Kuo, Local K-convoluted C-semigroups and complete second order abstract Cauchy problems, Filomat 32 (2018), 6789–6797. https://doi.org/10.2298/FIL1819789K
[15] F. Li, T.-J. Xiao, J. Liang and J. Zhang, On perturbation of convoluted C-regularized operator families, J. Funct. Spaces 2013 (2013), Article ID 579326, 8 pages. https://doi.org/10.1155/2013/579326
[16] F. Li, H. Wang and J. Zhang, Multiplicative perturbation of convoluted C-cosine functions and convoluted C-semigroups, J. Funct. Spaces 2013 (2013), Article ID 426459, 9 pages. https://doi.org/10.1155/2013/426459
[17] M. Li and Q. Zheng, α-Times integrated semigroups: local and global, Studia Math. 154 (2003), 243–252. https://doi.org/10.4064/sm154-3-5
[18] Y.-C. Li and S.-Y. Shaw, On generators of integrated C-semigroups and C-cosine functions, Semigroup Forum 47 (1993), 29–35. https://doi.org/10.1007/BF02573738
[19] Y.-C. Li and S.-Y. Shaw, On local α-times integrated C-semigroups, Abstr. Appl. Anal. 2007 (2007), Article ID34890, 18 pages. https://doi.org/10.1155/2007/34890
[20] Y.-C. Li and S.-Y. Shaw, Perturbation of nonexponentially-bounded α-times integrated C-semigroups, J. Math. Soc. Japan 55 (2003), 1115–1136. https://doi.org/10.2969/jmsj/1191418767
[21] P. J. Miana, Integrated groups and smooth distribution groups, Acta Math. Sin. 23 (2007), 57–64. https://doi.org/10.1007/s10114-005-0784-1
[22] M. Mijatović and S. Pilipović, α-Times integrated semigroups (α ∈ ℝ+), J. Math. Anal. Appl. 210 (1997), 790–803. https://doi.org/10.1006/jmaa.1997.5436
[23] I. Miyadera, M. Okubo and N. Tanaka, On integrated semigroups where are not exponentially bounded, Proc. Japan Acad. Ser. 69 (1993), 199–204. https://doi.org/10.3792/PJAA.69.199
[24] F. Neubrander, Integrated semigroups and their applications to the abstract Cauchy problem, Pacific J. Math. 135 (1988), 111–155. https://doi.org/10.2140/pjm.1988.135.111
[25] S. Nicasie, The Hille-Yosida and Trotter-Kato theorems for integrated semigroups, J. Math. Anal. Appl. 180 (1993), 303–316. https://doi.org/10.1006/JMAA.1993.1402
[26] S.-Y. Shaw and C.-C. Kuo, Generation of local C-semigroups and solvability of the abstract Cauchy problems, Taiwanese J. Math. 9 (2005), 291–311. https://doi.org/10.11650/twjm/1500407804
[27] N. Tanaka and I. Miyadera, C-semigroups and the abstract Cauchy problem, J. Math. Anal. Appl. 170 (1992), 196–206. https://doi.org/10.1016/0022-247X(92)90013-4
[28] N. Tanaka and N. Okazawa, Local C-semigroups and local integrated semigroups, Proc. Lond. Math. Soc. 61 (1990), 63–90. https://doi.org/10.1112/plms/s3-61.1.63
[29] S.-W. Wang, M.-C. Gao, Automatic extensions of local regularized semigroups and local regularized cosine functions, Proc. Lond. Math. Soc. 127 (1999), 1651–1663. https://www.jstor.org/stable/119474
[30] T.-J. Xiao and J. Liang, The Cauchy Problem for Higher-Order Abstract Differential Equations, Springer-Verlag, Berlin, 1998.
[31] N.-S. Yeh and C.-C. Kuo, Multiplicative perturbations of local α-times integrated C-semigroups, Acta Math. Sin. 37 (2017), 877–888. https://doi.org/10.1016/S0252-9602(17)30042-5