Inequalities for Hyperbolic Type Harmonic Preinvex Function
Download PDF
Authors: S. K. SAHOO, B. KODAMASINGH AND M. A. LATIF
DOI: 10.46793/KgJMat2405.697S
Abstract:
In the present paper, we have introduced a new class of preinvexity namely hyperbolic type harmonic preinvex functions and to support this new definition, some of its algebraic properties are elaborated. By using this new class of preinvexity, we have established a few Hermite-Hadamard type integral inequalities. Some novel refinements of Hemite-Hadamard type inequalities for hyperbolic type harmonic preinvex functions are presented as well. Finally, the Riemann-Liouville fractional version of the Hermite-Hadamard Inequality is established.
Keywords:
Preinvex function, Hyperbolic type convex function, fractional calculus, Hölder integral inequality, Hermite-Hadamard inequality.
References:
[1] T. Weir and B. Mond, Preinvex functions in multiple objective optimization, J. Math. Anal. Appl. 136(1) (1998), 29–38.
[2] R. Pini, Invexity and generalized convexity, Optimization 22(4) (1991), 513–525. https://doi.org/10.1080/02331939108843693
[3] M. A. Noor, Hermite-Hadamard integral inequalities for log-preinvex functions, J. Math. Anal. Approx. Theory 2(2) (2007), 126–131.
[4] S. R. Mohan and S. K. Neogy, On invex sets and preinvex functions, J. Math. Anal. Appl. 189(3) (1995), 901–908. https://doi.org/10.1006/jmaa.1995.1057
[5] I. İşcan, Hermite Hadamard type inequalities for harmonically convex function, Hacet. J. Math. Stat. 43(6) (2014), 935–942.
[6] T. Toplu, I. İşcan and M. Kadakal, Hyperbolic type convexity and some new inequalities, Honam Math. J. 42(2) (2020), 301–318. https://doi.org/10.5831/HMJ.2020.42.2.301
[7] S. Rashid, M. A. Latif, Z. Hammouch and Y. M. Chu, Fractional integral inequalities for strongly h-preinvex functions for a kth order differentiable functions, Symmetry 11 (2019), Paper ID 1448. https://doi.org/10.3390/sym11121448
[8] S. Afzal, S. Hussain and M. A. Latif, Hermite-Hadamard type integral inequalities for harmonically relative preinvex functions, Punjab Univ. J. Math. (Lahore) 52(3) (2020), 75–97.
[9] T. Antczak, Mean value in invexity analysis, Nonlinear Analysis: Theory, Methods and Applications 60(8) (2005), 1473–1484. https://doi.org/10.1016/j.na.2004.11.005
[10] M. U. Awan, S. Talib, M. A. Noor, Y. M. Chu and K. I. Noor, On post quantum estimates of upper bounds involving twice (p,q)-differentiable preinvex function, J. Inequal. Appl. 1 (2020), 1–3. https://doi.org/10.1186/s13660-020-02496-5
[11] A. Kashuri and R. Liko, Hermite-Hadamard type fractional integral inequalities for products of two MT (r; g,m,ϕ)-preinvex functions, Proyecciones (Antofagasta) 39(1) (2020), 219–242. http://dx.doi.org/10.22199/issn.0717-6279-2020-01-0014
[12] W. Sun, Hermite-Hadamard type local fractional integral inequalities for generalized s-preinvex functions and their generalization, Fractals 29(4) (2021), Paper ID 2150098, 38 pages. http://dx.doi.org/10.1142/S0218348X21500985
[13] S. Wu, M. U. Awan, M. U. Ullah, S. Talib and A. Kashuri, Some integral inequalities for n-polynomial ζ-preinvex functions, J. Funct. Spaces 2021 (2021), Article ID 6697729, 9 pages. https://doi.org/10.1155/2021/6697729
[14] A. Fernandez and P. O. Mohammed, Hermite-Hadamard inequalities in fractional calculus defined using Mittag-Leffler kernels, Math. Methods Appl. Sci. 44(10) (2021), 8414–8431. https://doi.org/10.1002/mma.6188
[15] M. B. Khan, P. O. Mohammed, M. A. Noor and Y. S. Hamed, New Hermite-Hadamard inequalities in fuzzy-interval fractional calculus and related inequalities, Symmetry 13(4) (2021), Paper ID 673. https://doi.org/10.3390/sym13040673