Spectral Expansion for Conformable Fractional Sturm- Liouville Problem on the Whole Line
Download PDF
Authors: B. ALLAHVERDIEV, H. TUNA AND Y. YALçINKAYA
DOI: 10.46793/KgJMat2406.811A
Abstract:
In this article, we discuss a conformable fractional Sturm-Liouville boundary-value problem on the whole line. We prove the existence of a spectral function for the singular conformable fractional Sturm-Lioville problem. Further, we establish a Parseval equality and spectral expansion formula by terms of the spectral function for conformable fractional Sturm-Liouville problem on the whole line.
Keywords:
Singular conformable fractional Sturm-Liouville equation, spectral function, Parseval equality, spectral expansion.
References:
[1] R. Khalil, M. Al. Horani, A. Yousef and M. Sababheh, A new definition of fractional derivative, J. Comput. Appl. Math. 264 (2014), 65–70. https://doi.org/10.1016/j.cam.2014.01.002
[2] I. Podlubny, Fractional Differential Equations, Academic Press, New York, 1999.
[3] Y. Wang, J. Zhou and Y. Li, Fractional Sobolev’s space on time scale via comformable fractional calculus and their application to a fractional differential equation on time scale, Adv. Math. Phys. (2016), Article ID 963491. https://doi.org/10.1155/2016/9636491
[4] K. B. Oldham and J. Spanier, The Fractional Calculus, Academic Press, New York, 1974.
[5] K. S. Miller and B. Ross, An Introduction to the Fractional Calculus and Fractional Differential Equations, John Wiley and Sons, New York, 1993.
[6] S. G. Samko, A. A. Kilbas and O. I. Marichev, Fractional Integrals and Derivatives-Theory and Applications, Gordon and Breach, Longhorne, PA, 1993.
[7] Y. A. Rossikhin and M. V. Shitikova, Applications of fractional calculus to dynamic problems of linear and nonlinear hereditary mechanics of solids, Applied Mechanics Reviews 50 (1997), 15–67.
[8] T. Abdeljawad, On conformable fractional calculus, J. Comput. Appl. Math. 279 (2015), 57–66. https://doi.org/10.1016/j.cam.2014.01.002
[9] F. A. Cetinkaya, Kesirli bir dalga denklemi üzerine, Süleyman Demirel University Journal of Natural and Applied Sciences 22(3) (2018), 1110–1113.
[10] M. Abu Hammad and R. Khalil, Abel’s formula and Wronskian for conformable fractional differential equations, International Journal of Differential Equations and Applications 13(3) (2014), 177–183.
[11] M. Abu Hammad and R. Khalil, Conformable fractional heat differential equations, International Journal of Pure and Applied Mathematics 94(2) (2014), 215–221.
[12] A. Gokdogan, E. Unal and E. Celik, Existence and uniqueness theorems for sequential linear conformable fractional differential equations, Miskolc Math. Notes 17(1) (2016), 267–279.
[13] R. Khalil and H. Abu-Shaab, Solution of some conformable fractional differential equations, International Journal of Pure and Applied Mathematics 103(4) (2015), 667–673.
[14] D. R. Anderson, Second-order self-adjoint differential equations using a proportional-derivative controller, Comm. Appl. Nonlinear Anal. 24(1) (2017), 17–48.
[15] T. Gulsen, E. Yilmaz and S. Goktas, Conformable fractional Dirac system on time scales, J. Inequal. Appl. 161 (2017).
[16] T. Gulsen, E. Yilmaz and H. Kemaloglu, Conformable fractional Sturm-Liouville equation and some existence results on time scales, Turkish J. Math. 42 (2018), 1348–1360.
[17] H. Weyl, Über gewöhnliche differentialgleichungen mit singularitaten und die zugehörigen entwicklungen willkürlicher funktionen, Math. Ann. 68 (1910), 220–269.
[18] G. Sh. Guseinov, An expansion theorem for a Sturm-Liouville operator on semi-unbounded time scales, Adv. Dyn. Syst. Appl. 3(1) (2008), 147–160.
[19] G. Sh. Guseinov, Eigenfunction expansions for a Sturm-Liouville problem on time scales, Int. J. Difference Equ. 2(1) (2007), 93–104.
[20] A. Huseynov and E. Bairamov, On expansions in eigenfunctions for second order dynamic equations on time scales, Nonlinear Dyn. Syst. Theory 9(1) (2009), 77–88.
[21] A. Huseynov, Eigenfunction expansion associated with the one-dimensional Schrödinger equation on semi-infinite time scale intervals, Rep. Math. Phys. 66(2) (2010), 207–235.
[22] B. M. Levitan and I. S. Sargsjan, Sturm-Liouville and Dirac Operators, Mathematics and its Applications (Soviet Series), Kluwer Academic Publishers Group, Dordrecht, 1991 (translated from the Russian).
[23] B. P. Allahverdiev, H. Tuna and Y. Yalçınkaya, Conformable fractional Sturm-Liouville equation, Math. Methods Appl. Sci. 42(10) (2019), 3508–3526.
[24] B. P. Allahverdiev, H. Tuna, An expansion theorem for q-Sturm-Liouville operators on the whole line, Turkish J. Math. 42 (2018), 1060–1071.
[25] B. P. Allahverdiev and H. Tuna, Eigenfunction expansion for singular Sturm-Liouville problems with transmission conditions, Electron. J. Differential Equations 2019(3) (2019), 1–10.
[26] B. P. Allahverdiev, H. Tuna and Y. Yalçınkaya, Spectral expansion for singular conformable fractional Sturm-Liouville problem, Math. Commun. 25 (2020), 237–252.
[27] B. P. Allahverdiev and H. Tuna, A spectral theory for discontinuous Sturm-Liouville problems on the whole line, Matematiche 74(2) (2019), 235–251.
[28] B. P. Allahverdiev and H. Tuna, Eigenfunction expansion in the singular case for q-Sturm-Liouville operators, Casp. J. Math. Sci. 8(2) (2019), 91–102.
[29] B. P. Allahverdiev and H. Tuna, A spectral expansion for Hahn-Sturm-Liouville equation on the whole line, Folia Math. 23(1) (2021), 3–19.
[30] M. A. Naimark, Linear Differential Operators, 2nd Edn, Nauka, Moscow, 1969, English translation of 1st Edn, Parts 1, 2, Ungar, New York, 1967, 1968.
[31] M. Al-Refai and T. Abdeljawad, Fundamental results of conformable Sturm-Liouville eigenvalue problems, Complexity (2017), Article ID 3720471.
[32] D. Baleanu, F. Jarad and E. Ugurlu, Singular conformable sequential differential equations with distributional potentials, Quaest. Math. 42(3) (2019), 277–287. https://doi.org/10.2989/16073606.2018.1445134
[33] A. Zettl, Sturm-Liouville Theory, Mathematical Surveys and Monographs 121, Amer. Math. Soc. Colloq. Publ., 2005.
[34] N. Benkhettou, A. M. C. Brito da Cruz and D. F. M. Torres, A fractional calculus on arbitrary tima scales: fractional differentiation and fractional integration, Signal Press 107 (2015), 230–237.
[35] L. Boyadjiev and R. Scherer, Fractional extensions of the temperature field problem in oil strata, Kuwait J. Sci. 31(2) (2004), 15–32.
[36] E. C. Titchmarsh, Eigenfunction Expansions Associated with Second-Order Differential Equations, Part I, Second Edition, Clarendon Press, Oxford, Great Britain, 1962.
[37] A. N. Kolmogorov and S. V. Fomin, Introductory Real Analysis, Dover Publications, New York, USA, 1970.