Pseudo GE-Algebras as the Extension of GE-Algebras
Download PDF
Authors: R. BANDARU, A. REZAEI, A. B. SAEID AND Y. B. JUN
DOI: 10.46793/KgJMat2406.859B
Abstract:
In this paper, the notion of a pseudo GE-algebra as an extension of a GE-algebra is introduced. Basic properties of pseudo GE-algebras are described. The concepts of strong pseudo BE-algebra, good pseudo BE-algebra, good pseudo GE-algebra, and the relationship between them are established. We provide a condition for a good pseudo BE-algebra to be a pseudo GE-algebra and for a strong pseudo BE-algebra to be a pseudo GE-algebra.
Keywords:
GE-algebra, pseudo GE-algebra, good pseudo GE-algebra, pseudo BE-algebra, strong pseudo BE-algebra.
References:
[1] R. K. Bandaru, A. Borumand Saeid and Y. B. Jun, On GE-algebras, Bull. Sect. Logic 50(1) (2021), 81–96. https://doi.org/10.18778/0138-0680.2020.20
[2] R. A. Borzooei, A. B. Saeid, A. Rezaei, A. Radfar and R. Ameri, On pseudo BE-algebras, Discuss. Math. Gen. Algebra Appl. 33(1) (2013), 95–108. doi:10.7151/dmgaa.1193
[3] L. C. Ciungu, Non-Commutative Multiple-Valued Logic Algebras, Springer, Cham, Heidelberg, New York, Dordrecht, London, 2014. https://doi.org/10.1007/978-3-319-01589-7
[4] A. Diego, Sur algébres de Hilbert, Collection de Logique Mathématique, Ser. A 21 (1967), 177–198.
[5] A. Di Nola, G. Georgescu and A. Iorgulescu, Pseudo-BL algebras I, Multiple-Valued Logic 8 (2002), 673–714.
[6] A. Di Nola, G. Georgescu and A. Iorgulescu, Pseudo-BL algebras II, Multiple-Valued Logic 8 (2002), 717–750.
[7] W. A. Dudek and Y. B. Jun, Pseudo-BCI algebras, East Asian Math. J. 24(2) (2008), 187–190.
[8] G. Dymek and A. Kozanecka-Dymek, Pseudo-BCI logic, Bull. Sect. Logic 42(1) (2013), 33–41.
[9] G. Georgescu and A. Iorgulescu, Pseudo-BCK algebras: an extension of BCK algebras, in: C. S. Calude, M. J. Dinneen, S. Sburlan (Eds.), Combinatorics, Computability and Logic. Discrete Mathematics and Theoretical Computer Science, Springer, London, 2001, 97–114. https://doi.org/10.1007/978-1-4471-0717-0_9
[10] Y. Imai, On axiom systems of propositional calculi. XIV, Proc. Japan Acad. 42(1) (1966), 19–22.
[11] A. Iorgulescu, Classes of pseudo-BCK algebras-Part I, J. Mult.-Valued Logic Soft Comput. 12 (2006), 71–130.
[12] K. Iseki, An algebra related with a propositional calculus, Proc. Japan Acad. 42(1) (1966), 26–29.
[13] Y. B. Jun, Positive implicative pseudo-valuations on BCK-algebras, Appl. Math. Sci. 5 (2011), 651–662.
[14] J. Kühr, Pseudo-BCK algebras and related structures, Habilitation thesis, Palacky University in Olomouc, 2007.
[15] A. Rezaei, A. B. Saeid and K. Y. S. Saber, On pseudo-CI algebras, Soft Comput. 23 (2019), 4643–4654.
[16] A. Walendziak, On axiom systems of pseudo-BCK algebras, Bull. Malays. Math. Sci. Soc. 34(2) (2011), 287–293.