Sufficient Conditions of Subclasses of Spiral-Like Functions Associated with Mittag-Leffler Functions
Download PDF
Authors: G. MURUGUSUNDARAMOORTHY AND T. BULBOACă
DOI: 10.46793/KgJMat2406.921M
Abstract:
The purpose of the present paper is to find the sufficient conditions for some subclasses of analytic functions associated with Mittag-Leffler functions to be in subclasses of spiral-like univalent functions. Further, we discuss geometric properties of an integral operator related to Mittag-Leffler functions.
Keywords:
Univalent functions, spiral-like functions, starlike and convex functions, Hadamard (convolution) product, Mittag-Leffler functions.
References:
[1] M. Abramowitz and I. A. Stegun (Eds.), Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, Dover Publications Inc., New York, 1965.
[2] A. A. Attiya, Some applications of Mittag-Leffler function in the unit disk, Filomat 30(7) (2016), 2075–2081. https://doi.org/10.2298/FIL1607075A
[3] D. Bansal and J. K. Prajapat, Certain geometric properties of the Mittag-Leffler functions, Complex Var. Elliptic Equ. 61(3) (2016), 338–350. https://doi.org/10.1080/17476933.2015.1079628
[4] T. Bulboacă and G. Murugusundaramoorthy, Univalent functions with positive coefficients involving Pascal distribution series, Commun. Korean Math. Soc. 35(3) (2020), 867-–877. https://doi.org/10.4134/CKMS.c190413
[5] N. E. Cho, S. Y. Woo and S. Owa, Uniform convexity properties for hypergeometric functions, Fract. Calc. Appl. Anal. 5(3) (2002), 303–313.
[6] P. L. Duren, Univalent Functions, Grundlehren der Mathematischen Wissenschaften Series 259, Springer Verlag, New York, 1983.
[7] M. El-Deeb, T. Bulboacă and J. Dziok, Pascal distribution series connected with certain subclasses of univalent functions, Kyungpook Math. J. 59 (2019), 301–314. https://doi.org/10.5666/KMJ.2019.59.2.301
[8] B. A. Frasin, An application of an operator associated with generalized Mittag-Leffler function, Konuralp J. Math. 7(1) (2019), 199–202.
[9] B. A. Frasin, T. Al-Hawary and F. Yousef, Some properties of a linear operator involving generalized Mittag-Leffler function, Stud. Univ. Babeş-Bolyai Math. 65(1) (2020), 67–75. https://doi.org/10.24193/subbmath.2020.1.06
[10] B. A. Frasin, T. Al-Hawary and F. Yousef, Necessary and sufficient conditions for hypergeometric functions to be in a subclass of analytic functions, Afr. Mat. 30(1–2) (2019), 223–230. https://doi.org/10.1007/s13370-018-0638-5
[11] H. J. Haubold, A. M. Mathai and R. K. Saxena, Mittag-Leffler functions and their applications, J. Appl. Math. 2011(2011), Article ID 298628. https://doi.org/10.1155/2011/298628
[12] V. Kiryakova, Generalized Fractional Calculus and Applications, Pitman Research Notes in Mathematics Series 301, Longman Scientific & Technical, Harlow, John Wiley & Sons, Inc., New York, 1994.
[13] E. Merkes and B. T. Scott, Starlike hypergeometric functions, Proc. Amer. Math. Soc. 12 (1961), 885–888.
[14] G. M. Mittag-Leffler, Sur la nouvelle fonction E(x), C. R. Acad. Sci. Paris 137 (1903), 554–558.
[15] G. Murugusundaramoorthy, Subordination results for spiral-like functions associated with the Srivastava-Attiya operator, Integral Transforms Spec. Funct. 23(2) (2012), 97–103. https://doi.org/10.1080/10652469.2011.562501
[16] G. Murugusundaramoorthy, D. Răducanu and K. Vijaya, A class of spirallike functions defined by Ruscheweyh-type q-difference operator, Novi Sad J. Math. 49(2) (2019), 59–71. https://doi.org/10.30755/NSJOM.08284
[17] G. Murugusundaramoorthy, K. Vijaya and S. Porwal, Some inclusion results of certain subclass of analytic functions associated with Poisson distribution series, Hacet. J. Math. Stat. 45(4) (2016), 1101–1107. https://doi.org/10.15672/HJMS.20164513110
[18] G. Murugusundaramoorthy, Subclasses of starlike and convex functions involving Poisson distribution series, Afr. Mat. 28(2017), 1357–1366. https://doi.org/10.1007/s13370-017-0520-x
[19] S. Porwal and M. Kumar, A unified study on starlike and convex functions associated with Poisson distribution series, Afr. Mat. 27(5) (2016), 1021–1027. https://doi.org/10.1007/s13370-016-0398-z
[20] M. S. Robertson, On the theory of univalent functions, Ann. of Math. (2) 37(2) (1936), 374–408.
[21] H. Silverman, Starlike and convexity properties for hypergeometric functions, J. Math. Anal. Appl. 172 (1993), 574–581. https://doi.org/10.1006/jmaa.1993.1044
[22] H. M. Srivastava, G. Murugusundaramoorthy and S. Sivasubramanian, Hypergeometric functions in the parabolic starlike and uniformly convex domains, Integral Transforms Spec. Funct. 18 (2007), 511–520. https://doi.org/10.1080/10652460701391324
[23] L. Spaček, Contribution à la théorie des fonctions univalentes, Časopis Pro Pěstování Matematiky 62 (1932), 12–19.
[24] A. Swaminathan, Certain sufficient conditions on Gaussian hypergeometric functions, Journal of Inequalities in Pure and Applied Mathematics 5(4) (2004), Article ID 83, 10 pages.
[25] A. Wiman, Über die nullstellen der funktionen Eα(x), Acta Math. 29 (1905), 217–134.