On Z-Symmetric Manifold with Conharmonic Curvature Tensor in Special Conditions
![](../images/pdf.png)
Authors: A. Y. TAşCı AND F. Ö. ZENGIN
DOI: 10.46793/KgJMat2501.065T
Abstract:
The object of the present paper is to study the Z-symmetric manifold with conharmonic curvature tensor in special conditions. In this paper, we prove some theorems about these manifolds by using the properties of the Z-tensor.
Keywords:
Conharmonic curvature tensor, Z-symmetric tensor, Codazzi tensor, Torse-forming vector field, Recurrent tensor.
References:
[1] D. B. Abdussatter, On conharmonic transformations in general relativity, Bull. Calcutta Math. Soc. 41 (1966), 409–416.
[2] S. Bergman, The Kernel Function and Conformal Mapping, American Mathematical Society, United States of America, 1950.
[3] A. L. Besse, Einstein Manifolds, Springer, Berlin, 1987.
[4] G. Caristi and M. Ferrara, On torse-forming vector valued 1-forms, Differ. Geom. Dyn. Syst. 5(1) (2003), 13–16.
[5] M.C. Chaki, Some theorems on recurrent and Ricci-recurrent spaces, Rend. Semin. Mat. Univ. Padova 26 (1956), 168–176.
[6] U. C. De, N. Guha and D. Kamilya, On generalized Ricci-recurrent manifolds, Tensor (N.S.) 56 (1995), 312–317.
[7] U. C. De, C. A. Mantica and Y. J. Suh, On weakly cyclic Z-symmetric manifolds, Acta Math. Hungar. 146(1) (2015), 153–167. https://doi.org/10.1007/s10474-014-0462-9
[8] U. C. De and P. Pal, On almost pseudo-Z-symmetric manifolds, Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica 53(1) (2014), 25–43.
[9] F. de Felice and C. J. S. Clarke, Relativity on Curved Manifolds, Cambridge University Press, Cambridge, 1990.
[10] A. Derdzinski and C. L. Shen, Codazzi tensor fields, curvature and Pontryagin forms, Proc. Lond. Math. Soc. 47(1) (1983), 15–26. https://doi.org/10.1112/plms/s3-47.1.15
[11] L. P. Eisenhart, Riemannian Geometry, Princeton University Press, Princeton, 1926.
[12] S. Ghosh, U. C. De and A. Taleshian, Conharmonic curvature tensor on N(k)-contact metric manifolds, ISRN Geometry (2011), 1–11. https://doi.org/10.5402/2011/423798
[13] İ. Hinterleitner and V. A. Kiosak, ϕ(Ric)-vector fields in Riemannian spaces, Arch. Math. 44(5) (2008), 385–390.
[14] Y. Ishii, On conharmonic transformations, Tensor (N.S.) 7 (1957), 73–80.
[15] C. A. Mantica and L. G. Molinari, Weakly Z-symmetric manifold, Acta Math. Hungar. 135 (2012), 80–96. https://doi.org/10.1007/s10474-011-0166-3
[16] C. A. Mantica and Y. J. Suh, Pseudo Z symmetric riemannian manifolds with harmonic curvature tensors, Int. J. Geom. Methods Mod. Phys. 9(1) (2012), Article ID 1250004, 21 pages. https://doi.org/10.1142/S0219887812500041
[17] C. A. Mantica and Y. J. Suh, Pseudo-Z symmetric spacetimes, J. Math. Phys. 55(4) (2014), Article ID 042502. https://doi.org/10.1063/1.4871442
[18] C. A. Mantica and Y. J. Suh, Recurrent Z forms on Riemannian and Kaehler manifolds, Int. J. Geom. Methods Mod. Phys. 9(7) (2012), Article ID 1250059, 26 pages. https://doi.org/10.1142/S0219887812500594
[19] J. Mikesh and M. Chodorova, On concircular and torse-forming vector fields on compact manifolds, Acta Math. Acad. Paedagog. Nyházi. (N.S.) 26(2) (2010), 329–335.
[20] J. Mikesh, V. E. Berezovski, B. Sandor and O. Chepurna, Differential Geometry of Special Mappings, Palacky University, Olomouc, 2015.
[21] P. M. Morse and H. Feshbach, Methods of Theoretical Physics, McGraw-Hill, New York, 1953.
[22] Z. Nehari, Conformal Mapping, McGraw-Hill, New York, 1952.
[23] N. Prakash, A note on Ricci-recurrent and recurrent spaces, Bull. Calcutta Math. Soc. 54 (1962), 1–7.
[24] W. Roter, On a generalization of conformally symmetric metrics, Tensor (N.S.) 46 (1987), 278–286.
[25] H. S. Ruse, Three-dimensional spaces of recurrent curvature, Proc. Lond. Math. Soc. 50 (1949), 438–446. https://doi.org/10.1112/plms/s2-50.6.438
[26] A. A. Shaikh and S. K. Hui, On weakly conharmonically symmetric manifolds, Tensor (N.S.) 70(2) (2008), 119–134.
[27] S. A. Siddiqui and Z. Ahsan, Conharmonic curvature tensor and the spacetime of general relativity, Differ. Geom. Dyn. Syst. 12 (2010), 213–220.
[28] S. Yamaguchi and M. Matsumoto, On Ricci-recurrent spaces, Tensor (N.S.) 19 (1968), 64–68.
[29] K. Yano, On the torse forming directions in Riemannian spaces, Proceedings of the Imperial Academy 20(6) (1944), 340–345. https://doi.org/10.3792/pia/1195572958
[30] A. Yavuz Taşcı and F. Özen Zengin, Concircularly flat Z-symmetric manifolds, An. Ştiinţ. Univ. Al. I. Cuza Iaşi. Mat. (N.S.) LXV(2) (2019), 241–250.
[31] A. Yavuz Taşcı and F. Özen Zengin, Z-symmetric manifold admitting concircular Ricci symmetric tensor, Afr. Mat. 31 (2020), 1093–1104. https://doi.org/10.1007/s13370-020-00782-5