Weaving g-Frames for Operators
Download PDF
Authors: A. KHOSRAVI AND J. S. BANYARANI
DOI: 10.46793/KgJMat2502.167K
Abstract:
Bemrose et al. introduced weaving frames and later, Deepshikha et al. generalized them to weaving K-frames. In this note, as a generalization of these notions, we introduce approximate K-duals and investigate the properties of K-g-frames and weaving K-g-frames. We show that woven K-g-frames and weakly woven K-g-frames coincide. We also study perturbation and erasure of woven K-g-frames and we show that they are stable under small perturbations. Also we generalize some of the known results in frame theory to K-g-frames and weaving K-g-frames.
Keywords:
K-frame, g-frame, weaving K-g-frame, perturbation.
References:
[1] T. Bemrose, P. G. Casazza, K. Gröchenig, M. C. Lammers and R. G. Lynch, Weaving frames, Oper. Matrices 10(4) (2016), 1093–1116. https://doi.org/10.7153/oam-10-61
[2] P. G. Casazza, D. Freeman and R. G. Lynch, Weaving Schauder frames, J. Approx. Theory 211 (2016), 42–60. https://doi.org/10.1016/j.jat.2016.07.001
[3] P. G. Casazza and R. G. Lynch, Weaving properties of Hilbert space frames, 2015 International Conference on Sampling Theory and Applications (SampTA), 2015, 110–114. https://doi.org/10.1109/SAMPTA.2015.7148861
[4] O. Christensen, An Introduction to Frames and Riesz Bases, 2nd ed., Applied and Numerical Harmonic Analysis, Birkhäuser/Springer, Cham, 2016. https://doi.org/10.1007/978-3-319-25613-9
[5] I. Daubechies, A. Grossmann and Y. Meyer, Painless nonorthogonal expansions, J. Math. Phys. 27 (1986), 1271–1283. https://doi.org/10.1063/1.527388
[6] Deepshikha and L. K. Vashisht, Weaving K-frames in Hilbert spaces, Results Math. 73 (2018), Article ID 81. https://doi.org/10.1007/s00025-018-0843-4
[7] R. J. Duffin and A. C. Schaeffer, A class of nonharmonic Fourier series, Trans. Amer. Math. Soc. 72 (1952), 341–366. https://doi.org/10.1090/S0002-9947-1952-0047179-6
[8] L. Gǎvruta, Frames for operators, Appl. Comput. Harmon. Anal. 32 (2012), 139–144. https://doi.org/10.1016/j.acha.2011.07.006
[9] A. Khosravi and B. Khosravi, Fusion frames and g-frames in Banach spaces, Proc. Indian Acad. Sci. Math. Sci. 121(2) (2011), 155–164. https://doi.org/10.1007/s12044-011-0020-0
[10] A. Khosravi and M. M. Azandaryani, Approximate duality of g-frames in Hilbert spaces, Acta Math. Sci. 34B(3) (2014), 639–652.
[11] A. Khosravi and K. Musazadeh, Fusion frames and g-frames, J. Math. Anal. Appl. 342 (2) (2008), 1068–1083. https://doi.org/10.1016/j.jmaa.2008.01.002
[12] A. Khosravi and J. S. Banyarani, Weaving g-frames and weaving fusion frames, Bull. Malays. Math. Sci. Soc. 42 (2019), 3111–3129. https://doi.org/10.1007/s40840-018-0647-4
[13] A. Khosravi and J. S. Banyarani, Some properties of g-frames in Banach spaces, Int. J. Wavelets Multiresolut. Inf. Process. 16(6) (2018), Article ID 1850051. https://doi.org/10.1142/S0219691318500510
[14] W. Sun, —g-Frames and g-Riesz bases, J. Math. Anal. Appl. 322(1) (2006), 437–452. https://doi.org/10.1016/j.jmaa.2005.09.039
[15] X. Xiao, Y. Zhu and L. Gǎvruta, Some properties of K-frames in Hilbert spaces, Results Math. 63 (2013), 1243–1255. https://doi.org/10.1007/s00025-012-0266-6