Positivity and Periodicity in Nonlinear Neutral Mixed Type Levin-Nohel Integro-Differential Equations


Download PDF

Authors: K. BESSIOUD, A. ARDJOUNI AND A. DJOUDI

DOI: 10.46793/KgJMat2502.253B

Abstract:

In this work, we give sufficient conditions for the existence of periodic and positive periodic solutions for a nonlinear neutral mixed type Levin-Nohel integro-differential equation with variable delays by using Krasnoselskii’s fixed point theorem. Also, we obtain the existence of a unique periodic solution of the posed equation by means of the contraction mapping principle. As an application, we give an example to illustrate our results. Previous results are extended and generalized.



Keywords:

Fixed points, positivity, periodicity, Levin-Nohel integro-differential equations.



References:

[1]   A. Ardjouni and A. Djoudi, Existence of positive periodic solutions for two types of second order nonlinear neutral differential equations with variable delay, Proyecciones 32(4) (2013), 377–391. https://doi.org/10.4067/S0716-09172013000400006

[2]   A. Ardjouni and A. Djoudi, Existence of periodic solutions in totally nonlinear neutral dynamic equations with variable delay on a time scale, Mathematics in Engineering, Science and Aerospace (MESA) 4(3) (2013), 305–318.

[3]   A. Ardjouni and A. Djoudi, Existence of positive periodic solutions for two kinds of nonlinear neutral differential equations with variable delay, Dyn. Contin. Discrete Impuls. Syst. Ser. A Math. Anal. 20(3) (2013), 357–366.

[4]   A. Ardjouni and A. Djoudi, Existence and positivity of solutions for a totally nonlinear neutral periodic differential equation, Miskolc Math. Notes 14(3) (2013), 757–768. https://doi.org/10.18514/MMN.2013.742

[5]   A. Ardjouni and A. Djoudi, Existence of positive periodic solutions for a second-order nonlinear neutral differential equation with variable delay, Adv. Nonlinear Anal. 2(2) (2013), 151–161. https://doi.org/10.1515/anona-2012-0024

[6]   A. Ardjouni and A. Djoudi, Existence of periodic solutions for a second order nonlinear neutral differential equation with functional delay, Electron. J. Qual. Theory Differ. Equ. 2012(31) (2012), 1–9. https://doi.org/10.14232/ejqtde.2012.1.31

[7]   A. Ardjouni and A. Djoudi, Existence of positive periodic solutions for a nonlinear neutral differential equation with variable delay, Appl. Math. E-Notes 12 (2012), 94–101.

[8]   L. C. Becker and T. A. Burton, Stability, fixed points and inverse of delays, Proc. Roy. Soc. Edinburgh Sect. A 136(2) (2006), 245–275. https://doi.org/10.1017/S0308210500004546

[9]   K. Bessioud, A. Ardjouni and A. Djoudi, Stability of nonlinear neutral mixed type liven-nohel integro-differential equations, Kragujevac J. Math. 46(5) (2022), 721–732.

[10]   K. Bessioud, A. Ardjouni and A. Djoudi, Periodicity and positivity in neutral nonlinear Liven-Nohel integro-differential equation, Honam Math. J. 42(4) (2020), 667–680. https://doi.org/10.5831/HMJ.2020.42.4.667

[11]   K. Bessioud, A. Ardjouni and A. Djoudi, Asymptotic stability in nonlinear neutral Levin-Nohel integro-differential equations, Journal of Nonlinear Functional Analysis 2017(19) (2017), 1–12. https://doi.org/10.23952/jnfa.2017.19

[12]   T. A. Burton, Liapunov functionals, fixed points and stability by Krasnoselskii’s theorem, Nonlinear Stud. 9(2) (2002), 181–190.

[13]   T. A. Burton, Stability by Fixed Point Theory for Functional Differential Equations, Dover Publications, New York, 2006.

[14]   T. A. Burton, A fixed point theorem of Krasnoselskii, App. Math. Lett. 11(1) (1998), 85–88. https://doi.org/10.1016/S0893-9659(97)00138-9

[15]   T. A. Burton, Stability and Periodic Solutions of Ordinary and Functional Differential Equations, Academic Press, New York, 1985.

[16]   F. Chen, Positive periodic solutions of neutral Lotka-Volterra system with feedback control, Appl. Math. Comput. 162(3) (2005), 1279–1302. https://doi.org/10.1016/j.amc.2004.03.009

[17]   I. Derrardjia, A. Ardjouni and A. Djoudi, Stability by Krasnoselskii’s theorem in totally nonlinear neutral differential equation, Opuscula Math. 33(2) (2013), 255–272. http://dx.doi.org/10.7494/OpMath.2013.33.2.255

[18]    N. T. Dung, Asymptotic behavior of linear advanced differential equations, Acta Math. Sci. Ser. B (Engl. Ed.) 35(3) (2015), 610–618. https://doi.org/10.1016/S0252-9602(15)30007-2

[19]   N. T. Dung, New stability conditions for mixed linear Levin-Nohel integro-differential equations, J. Math. Phys. 54(8) (2013), 1–11. https://doi.org/10.1063/1.4819019

[20]   M. Fan, K. Wang, P. J. Y. Wong and R. P. Agarwal, Periodicity and stability in periodic n-species Lotka-Volterra competition system with feedback controls and deviating arguments, Acta Math. Sin. (Engl. Ser.) 19(4) (2003), 801–822. https://doi.org/10.1007/s10114-003-0311-1

[21]   J. K. Hale, Theory of Functional Differential Equations, Second Edition, Applied Mathematical Sciences, Springer-Verlag, New York-Heidelberg, 1977. https://doi.org/10.1007/978-1-4612-9892-2

[22]   J. K. Hale and S. M. Verduyn Lunel, Introduction to Functional Differential Equations, Applied Mathematical Sciences, Springer-Verlag, New York, 1993. https://doi.org/10.1007/978-1-4612-4342-7

[23]   M. B. Mesmouli, A. Ardjouni and A. Djoudi, Study of the stability in nonlinear neutral differential equations with functional delay using Krasnoselskii-Burton’s fixed-point, Appl. Math. Comput. 243 (2014), 492–502. https://doi.org/10.1016/j.amc.2014.05.135

[24]   M. B. Mesmouli, A. Ardjouni and A. Djoudi, Stability in neutral nonlinear differential equations with functional delay using Krasnoselskii-Burton’s fixed-point, Nonlinear Stud. 21(4) (2014), 601–617.

[25]   D. R. Smart, Fixed Point Theorems, Cambridge Tracts in Mathematics, Cambridge University Press, London-New York, 1974.

[26]   Y. Wang, H. Lian and W. Ge, Periodic solutions for a second order nonlinear functional differential equation, App. Math. Lett. 20(1) (2007), 110–115. https://doi.org/10.1016/j.aml.2006.02.028

[27]   E. Yankson, Existence and positivity of solutions for a nonlinear periodic differential equation, Arch. Math. (Brno) 48(4) (2012), 261–270. https://doi.org/10.5817/AM2012-4-261