Essential Approximate Pseudospectra of Multivalued Linear Relations


Download PDF

Authors: A. JERIBI AND K. MAHFOUDHI

DOI: 10.46793/KgJMat2502.267J

Abstract:

One of the fundamental ideas investigated in A. Ammar, A. Jeribi and K. Mahfoudhi in [?] is that of providing conditions under which the essential approximate pseudospectrum of closed, densely defined linear operators have a relationship with Fredholm theory and perturbation theory. In this paper the approximate pseudospectrum and the essential approximate pseudospectrum of closed, densely defined multivalued linear relations are introduced and studied, and work done in the aforementioned papers are extended to general multivalued linear relations



Keywords:

Pseudospectrum, approximate pseudospectra, essential approximate pseudospectra, multivalued linear relations.



References:

[1]   F. Abdmouleh, T. Àlvarez, A. Ammar and A. Jeribi, Spectral mapping theorem for Rakocević and Schmoeger essential spectra of a multivalued linear operator, Mediterr. J. Math. 12(3) (2015), 1019–1031. https://doi.org/10.1007/s00009-014-0437-7

[2]   A. Ammar, A characterization of some subsets of essential spectra of a multivalued linear operator, Complex Anal. Oper. Theory 11(1) (2017), 175–196. https://doi.org/10.1007/s11785-016-0591-y

[3]   A. Ammar, H. Daoud and A. Jeribi, Pseudospectra and essential pseudospectra of multivalued linear relations, Mediterr. J. Math. 12(4) (2015), 1377–1395. https://doi.org/10.1007/s00009-014-0469-z

[4]   A. Ammar, H. Daoud and A. Jeribi, Stability of pseudospectra and essential pseudospectra of linear relations, J. Pseudo-Differ. Oper. Appl. 7(4) (2015), 473–491. https://doi.org/10.1007/s11868-016-0150-3

[5]   A. Ammar, A. Jeribi and K. Mahfoudhi, A characterization of the essential approximation pseudospectrum on a Banach space, Filomat 31 (11) (2017), 3599–3610. https://doi.org/10.2298/FIL1711599A

[6]    A. Ammar, A. Jeribi and K. Mahfoudhi, A characterization of the condition pseudospectrum on Banach space, Funct. Anal. Approx. Comput. 10(2) (2018), 13–21. http://www.pmf.ni.ac.rs/faac

[7]   A. Ammar, A. Jeribi and K. Mahfoudhi, The condition pseudospectrum of a operator pencil, Asian-Eur. J. Math. 14(4) (2021), 12 pages. https://doi.org/10.1142/S1793557121500571

[8]   A. Ammar, A. Jeribi and K. Mahfoudhi, Some description of essential structured approximate and defect pseudospectrum, Korean J. Math. 28(4) (2020), 673–697. http://dx.doi.org/10.11568/kjm.2020.28.4.673

[9]   A. Ammar, A. Jeribi and K. Mahfoudhi, The condition pseudospectrum subset and related results, J. Pseudo-Differ. Oper. Appl. 11(1) (2020), 491–504. https://doi.org/10.1007/s11868-018-0265-9

[10]   A. Ammar, A. Jeribi and K. Mahfoudhi, Browder essential approximate pseudospectrum and defect pseudospectrum on a Banach space, Extracta Math. 34(1) (2019), 29–40. https://doi.org/10.17398/2605-5686.34.1.29

[11]   A. Ammar, A. Jeribi and K. Mahfoudhi, Measure of noncompactness, essential approximation and defect pseudospectrum, Methods Funct. Anal. Topology 25(1) (2019), 1–11.

[12]   T. Àlvarez, A. Ammar and A. Jeribi, On the essential spectra of some matrix of lineair relations, Math. Methods Appl. Sci. 37 (2014), 620–644. https://doi.org/10.1002/mma.2818

[13]   T. Àlvarez, A. Ammar and A. Jeribi, A characterization of some subsets of ????-essential spectra of a multivalued linear operator, Colloq. Math. 135(2) (2014), 171–186. https://doi.org/10.4064/cm135-2-2

[14]   E. Chafai and M. Mnif, Perturbation of normally solvable linear relations in paracomplete spaces, Linear Algebra Appl. 439(7) (2013), 1875–1885. https://doi.org/10.1016/j.laa.2013.05.019

[15]   E. B. Davies, Linear Operators and their Spectra, Cambridge Studies in Advanced Mathematics 106, Camb. Univ. Press, Cambridge, 2007.

[16]   R. W. Cross, Multivalued Linear Operators, Monographs and Textbooks in Pure and Applied Mathematics 213, Marcel Dekker, Inc., New York, 1998.

[17]   A. Jeribi, Spectral Theory and Applications of Linear Operators and Block Operator Matrices, Springer-Verlag, New York, 2015.

[18]   L. N. Trefethen,Pseudospectra of Matrices, reprinted from: D. F. Griffiths and G. A. Watson (Eds.), Numerical Analysis, Longman Science and Technology, Harlow, 1992, 234–266.

[19]   L. N. Trefethen, Pseudospectra of linear operators, SAIM Review 39(3) (1997), 383–406. https://doi.org/10.1137/s0036144595295284

[20]   M. Schechter, Principles of Functional Analysis, Second Edition, Graduate Studies in Mathematics 36, American Mathematical Society, Providence, RI, 2002.

[21]   J. M. Varah, The computation of bounds for the invariant subspaces of a general matrix operator, Ph.D. Thesis, Stanford University ProQuest LLC, (1967).

[22]   M. P. H. Wolff, Discrete approximation of unbounded operators and approximation of their spectra, J. Approx. Theory 113 (2001), 229–244. https://doi.org10.1006/jath.2001.3588