Permuting Tri-Derivations on Posets


Download PDF

Authors: A. Y. ABDELWANIS AND A. R. KHAN

DOI: 10.46793/KgJMat2503.353A

Abstract:

Let P be a partially ordered set (poset). The main objective of the present paper is to introduce and study the idea of permuting tri-derivations of posets. Several characterization theorems involving permuting tri-derivations are given. In particular, we prove that if d1 and d2 are two permuting tri-derivations of P with traces ϕ1 and ϕ2, then ϕ1 ϕ2 if and only if ϕ2(ϕ1(x)) = ϕ1(x) for all x P.



Keywords:

Derivation, fixed points, partially ordered set (poset), permuting tri-derivation.



References:

[1]   M. Ashraf, S. Ali and C. Haetinger, On derivations in rings and their applications, Aligarh Bull. Math. 25(2) (2006), 79–107.

[2]   M. Ashraf and M. A. Siddeeque, On permuting n-derivations in near-rings, Commun. Korean Math. Soc. 28(4) (2013), 697–707. https://doi.org/10.4134/CKMS.2013.28.4.697

[3]   T. Albu and M. L. Teply, Generalized derivation of posets and modular lattices, Discrete Math. 214 (2000), 1–19. https://doi.org/10.1016/S0012-365X(99)00194-6

[4]   M. Asci, O. Kecilioglu and S. Ceran, Permuting tri-(f,g)-derivations on lattices, Ann. Fuzzy Math. Inform. 1(2) (2011), 189–196.

[5]   I. Chajda and J. Rachünek, Forbidden configurations for distributive and modular ordered sets, Nathematics 5 (1989), 407–423. https://doi.org/10.1007/BF00353659

[6]   G. Gierz, K. H. Hofmann, K. Keimel, J. D. Lawson, M. Mislove and D. S. Scott, Continuous Lattices and Domains, Cambridge University Press, Cambridge United Kingdom, 2003.

[7]   M. A. Öztürk, Permuting tri-derivations in prime and semi-prime rings, East Asian Math. J. 15(2) (1999), 177–190.

[8]   M. A. Öztürk, H. Yazarli and K. H. Kim, Permuting tri-derivations in lattices, Quaest. Math. 32 (2009), 415–425. https://doi.org/10.2989/QM.2009.32.3.10.911

[9]   E. C. Posner, Derivations in prime rings, Proc. Amer. Math. Soc. 8 (1957), 1093–1100.

[10]   G. Szasz, Derivations of lattices, Acta Sci. Math. 37 (1975), 149–154.

[11]   X. L. Xin, T. Y. Li and J. H. Lu, On derivations of lattices, Inform. Sci. 178 (2008), 307–316. https://doi.org/10.1016/j.ins.2007.08.018

[12]   X. L. Xin, The fixed set of a derivation in lattices, J. Fixed Point Theory Appl. 1 (2012), 1–12.

[13]   H. Yazarli and M. A. Öztürk, Permuting tri-f-derivations in lattices, Commun. Korean Math. Soc. 26(1) (2011), 13–21. https://doi.org/10.4134/CKMS.2011.26.1.013

[14]   H. Zhang and Q. Li, On derivations of partially ordered sets, Math. Slovaca 67(1) (2017), 17–22. https://doi.org/10.1515/ms-2016-0243