Investigations on a Riemannian Manifold with a Semi- Symmetric Non-Metric Connection and Gradient Solitons


Download PDF

Authors: K. DE, U. C. DE AND A. GEZER

DOI: 10.46793/KgJMat2503.387D

Abstract:

This article carries out the investigation of a three-dimensional Riemannian manifold N3 endowed with a semi-symmetric type non-metric connection. Firstly, we construct a non-trivial example to prove the existence of a semi-symmetric type non-metric connection on N3. It is established that a N3 with the semi-symmetric type non-metric connection, whose metric is a gradient Ricci soliton, is a manifold of constant sectional curvature with respect to the semi-symmetric type non-metric connection. Moreover, we prove that if the Riemannian metric of N3 with the semi-symmetric type non-metric connection is a gradient Yamabe soliton, then either N3 is a manifold of constant scalar curvature or the gradient Yamabe soliton is trivial with respect to the semi-symmetric type non-metric connection. We also characterize the manifold N3 with a semi-symmetric type non-metric connection whose metrics are Einstein solitons and m-quasi Einstein solitons of gradient type, respectively.



Keywords:

Riemannian manifolds, gradient Ricci solitons, gradient Yamabe solitons, gradient Einstein solitons, m-quasi Einstein solitons.



References:

[1]   S. Agashe and M. R. Chafle, A semi-symmetric non-metric connection on a Riemannian manifold, Indian J. Pure Appl. Math. 23 (1992), 399–409.

[2]   A. M. Blaga, Solitons and geometrical structures in a perfect fluid spacetime, Rocky Mountain J. Math. 50 (2020), 41–53.

[3]   A. M. Blaga and C. Özgür, Almost η-Ricci and almost η-Yamabe solitons with torse forming potential vector field, Quaest. Math. (2020), 1–21.

[4]   A. Barros and J. N. Gomes, A compact gradient generalized quasi-Einstein metric with constant scalar curvature, J. Math. Anal. Appl. 401 (2013), 702–705.

[5]   B. Y. Chen and S. Deshmukh, Yamabe and quasi-Yamabe solitons on Euclidean submanifolds, Mediterr. J. Math. 15(194) (2018), 8 pages.

[6]   A. De, On almost pseudo symmetric manifolds admitting a type of semi-symmetric non-metric connection, Acta Math. Hungar. 125(1–2) (2009), 183–190.

[7]   K. De and U. C. De, A note on gradient solitons on para-Kenmotsu manifolds, Int. J. Geom. Methods Mod. Phys. 18(1) (2021), Article ID 2150007, 11 pages.

[8]   K. De and U. C. De, Almost quasi-Yamabe solitons and gradient almost quasi-Yamabe solitons in paracontact geometry, Quaest. Math. 44(11) (2021), 1429–1440.

[9]   S. Deshmukh and B. Y. Chen, A note on Yamabe solitons, Balkan J. Geom. Appl. 23(1) (2018), 37–43.

[10]   Y. Dogru, C. Özgür and C. Murathan, Riemannian manifolds with a semi-symmetric nonmetric connection satisfying some semisymmetry conditions, Bull. Math. Anal. Appl. 3(2) (2011), 206–212.

[11]   A. Friedmann and J. A. Schouten, Über die geometric der holbsymmetrischen ubertragurgen, Math. Z. 21 (1924), 211–233.

[12]   S. Golab, On semi-symmetric and quarter-symmetric linear connections, Tensor (N.S.) 29 (1975), 249–254.

[13]   R. S. Hamilton, Three-manifolds with positive Ricci curvature, J. Differential Geom. 17 (1982), 255–306.

[14]   R. S. Hamilton, The Ricci flow on surfaces, Contemp. Math. 71 (1988), 237–261.

[15]   H. A. Hayden, Subspace of space with torsion, Proc. Lon. Math. Soc. 34 (1932), 27–50.

[16]   C. He, P. Petersen and W. Wylie, On the classification of warped product Einstein metrics, Comm. Anal. Geom. 20 (2012), 271–312.

[17]   S. Y. Hsu, A note on compact gradient Yamabe solitons, J. Math. Anal. Appl. 388 (2012), 725–726.

[18]   C. Özgür and S. Sular, Warped products with a semi-symmetric non-metric connection, Arab J. Math. Sci. 36 (2011), 461–473.

[19]   J. Sengupta, U. C. De and T. Q. Binh, On a type of semi-symmetric non-metric connection on a Riemannian manifold, Indian J. Pure Appl. Math. 31(12) (2000), 1659–1670.

[20]   Y. J. Suh and U. C. De, Yamabe solitons and Ricci solitons on almost co-Kähler manifolds, Canad. Math. Bull. 62 (2019), 653–661.

[21]   Y. Wang, Yamabe solitons on three-dimensional Kenmotsu manifolds, Bull. Belg. Math. Soc. Simon Stevin 23 (2016), 345–355.

[22]   H. Weyl, Reine Infinitesimal geometrie, Math. Z. 2(1918), 384–411.

[23]   K. Yano, On semi-symmetric metric connection, Rev. Roumaine Math. Pures Appl. 15 (1970), 1579–1586.

[24]   F. O. Zengin, S. A. Demirbag, S. A. Uysal and H. B. Yilmaz, Some vector fields on a Riemannian manifold with semi-symmetric metric connection, Bull. Iranian Math. Soc. 38 (2012), 479–490.

[25]   F. O. Zengin, S. A. Uysal and S. A. Demirbag, On sectional curvature of a Riemannian manifold with semi-symmetric metric connection, Ann. Polon. Math. 101 (2011), 131–138.