New Results Parametric Apostol-Type Frobenius-Euler Polynomials and their Matrix Approach.
Download PDF
Authors: W. RAMíREZ, M. J. ORTEGA, D. BEDOYA AND A. URIELES
DOI: 10.46793/KgJMat2503.411R
Abstract:
The new algebraic properties of the parametric Apostol-type Frobenius-Euler polynomials and parametric type Frobenius-Euler polynomial have been explained in this research. The researchers have studied the series of the Taylor type and established the relation between the classic Apostol Frobenius-Euler and Frobenius-Euler polynomials. This work has also addressed the generalized parametric Apostol-type Frobenius-Euler polynomials matrices and has shown some of their properties. Finally, this research provided some factorizations of Apostol-type Frobenius-Euler matrix that involves the generalized Pascal matrix, Fibonacci and Lucas matrices, respectively.
Keywords:
Appell polynomials, Frobenius-Euler polynomials, Apostol Frobenius-Euler polynomials, Apostol Frobenius-Euler numbers, parametric generalization.
References:
[1] F. Avram and M. S. Taqqu, Noncentral limit theorems and Appell polynomials, Ann. Probab. 15 (1987), 767–775.
[2] S. Araci and M. Acikgoz, Construction of fourier expansion of Apostol Frobenius-Euler polynomials and its applications, Adv. Difference Equ. 67 (2018), 1–14. https://doi.org/10.1186/s13662-018-1526-x
[3] L. Castilla, W. Ramírez and A. Urieles, An extended generalized-extensions for the Apostol type polynomials, Abstr. Appl. Anal. 2018, 1–13. https://doi.org/10.1155/2018/2937950
[4] D. Bedoya, M. Ortega, W. Ramírez and A. Urieles, New biparametric families of Apostol-Frobenius-Euler polynomials of level m, Matematychni Studii 55(1) (2021), 10–23. https://doi.org/10.30970/ms.55.1.10-23
[5] B. Kurt and Y. Simsek, On the generalized Apostol-type Frobenius-Euler polynomials, Adv. Difference Equ. 2013(1) (2013), 1–9. https://doi.org/10.1186/1687-1847-2013-1
[6] B. Kurt, A further generalization of the Bernoulli polynomials and on the 2D-Bernoulli polynomials Bn2(x,y), Appl. Math. Sci. 4 (2010), 2315–2322.
[7] Q-M. Luo, Apostol-Euler polynomials of higher order and Gaussian hypergeometric functions, Taiwan J. Math. 10(4) (2006), 917–925. https://doi.org/10.11650/twjm/1500403883
[8] M. Masjed-Jamei and W. Koepf, Symbolic computation of some power-trigonometric series, J. Symbolic Comput. 80 (2017), 273–284. https://doi.org/10.1016/j.jsc.2016.03.004
[9] M. Masjed-Jamei, M. R. Beyki and W. Koepf, A new type of Euler polynomials and numbers, Mediterr. J. Math. 15 (2018), 1–17. https://doi.org/10.1007/s00009-018-1181-1
[10] N. Kilar and Y. Simsek, Two parametric kinds of Eulerian-type polynomials associated with Eulers formula, Symmetry 11 (2019), 1–19. https://doi.org/10.3390/sym11091097
[11] W. Ramírez, Y. Quintana and G. Urieles, Generalized Apostol-Type Polynomials Matrix and Algebraic Properties, Math. Reports. 21(71)(2) (2019), 249–264.
[12] W. Ramírez, M. Ortega and A. Urieles, New generalized Apostol Frobenius-Euler polynomials and their matrix approach, Kragujevac J. Math. 45(3) (2021), 393–407. https://doi.org/10.46793/KgJMat2103.393O
[13] H. M. Srivastava, M. J. Masjed and M. R. Beyki, A parametric type of the Apostol-Bernoulli, Apostol-Euler and Apostol-Genocchi polynomials, Appl. Math. Inf. Sci. 12 (2018), 907–916. https://doi.org/10.18576/amis/120502
[14] P. Tempesta, Formal groups, Bernoulli-type polynomials and L-series, C. R. Math. Acad. Sci. Paris 345 (2007), 303–306.
[15] Y. Quintana, W. Ramírez and A. Urieles, On an operational matrix method based on generalized Bernoulli polynomials of level m, Calcolo 53(3) (2018), 1–29. https://doi.org/10.1007/s10092-018-0272-5
[16] Y. Quintana, W. Ramírez and A. Urieles, Euler matrices and their algebraic properties revisited, Appl. Math. Inf. Sci. 14(4) (2020), 583–596. http://dx.doi.org/10.18576/amis/140407
[17] A. Urieles, M. Ortega, W. Ramirez and S. Vega, New results on the q-generalized Bernoulli polynomials of level m, Demonstr. Math. 52 (2019), 511–522. https://doi.org/10.1515/dema-2019-0039
[18] A. Urieles, W. Ramírez, M. J. Ortega and D. Bedoya, Fourier expansion and integral representation generalized Apostol-type Frobenius-Euler polynomials, Adv. Difference Equ. 534 (2020), 1–14. https://doi.org/10.1186/s13662-020-02988-0
[19] Z. Zhang and J. Wang, Bernoulli matrix and its algebraic properties, Discrete Appl. Math. 154(11) (2006), 1622–1632. https://doi.org/10.1016/j.dam.2006.01.008
[20] Z. Zhang and Y. Zhang, The Lucas matrix and some combinatorial identities, Indian J. Pure Appl. Math. 38(5) (2007), 457–465.