Concerning Multivariate Bernstein Polynomials and Stochastic Logic


Download PDF

Authors: Y. QUINTANA

DOI: 10.46793/KgJMat2503.465Q

Abstract:

Among the applications of the Bernstein polynomials in one variable is their use in solving problems associated with stochastic computing. Taking as a starting point the notion of stochastic logic in the sense of Qian-Riedel-Rosenberg, the aim of this paper is to investigate some necessary and sufficient conditions for guaranteeing whether polynomial operations can be implemented with stochastic logic based on multivariate Bernstein polynomials with coefficients in the unit interval.



Keywords:

Stochastic computing, stochastic logic, multivariate Bernstein polynomials, uniform approximation.



References:

[1]   A. Alaghi and J. P. Hayes, Survey of stochastic computing, ACM Trans. Embed. Comput. Syst. 12(2) (2013), 1–19. https://doi.org/10.1145/2465787.2465794

[2]   A. Bayad and T. Kim, Identities involving values of Bernstein, q-Bernoulli, and q-Euler polynomials, Russ. J. Math. Phys. 18(2) (2011), 133–143. https://doi.org/10.1134/S1061920811020014

[3]    J. Berchtold and A. Bowyer, Robust arithmetic for multivariate Bernstein-form polynomials, Comput.-Aided Des. 32 (2000), 681–689. https://doi.org/10.1016/S0010-4485(00)00056-7

[4]   P. L. Butzer, On two-dimensional Bernstein polynomials, Canad. J. Math. 5 (1953), 107–113. https://doi.org/10.4153/CJM-1953-014-2

[5]   R. T. Farouki and T. N. T. Goodman, On the optimal stability of the Bernstein basis, Math. Comp. 65(216) (1996), 1553–1566. https://doi.org/10.1090/S0025-5718-96-00759-4

[6]   R. T. Farouki and V. T. Rajan, On the numerical condition of polynomials in Bernstein form, Comput. Aided Geom. Design 4 (1987), 191–216. https://doi.org/10.1016/0167-8396(87)90012-4

[7]   B. R. Gaines, Stochastic computing, in: Proceedings of American Federation of Information Processing Societies: Proceedings of the AFIPS67 Spring Joint Computer Conference, Books, Inc., New Jersey, 1967, 149–156. https://doi.org/10.1145/1465482.1465505

[8]   B. R. Gaines, Techniques of identification with the stochastic computer, in: Proceedings IFAC Symposium on The Problems of Identification in Automatic Control Systems, Section 6 Special Identification Instruments, Prague, 1967, 1–18. https://pages.cpsc.ucalgary.ca/~gaines/reports/COMP/IdentSC/IdentSC.pdf

[9]   B. R. Gaines, Stochastic computers, in: A. R. Meetham and R. A. Hudson (Eds.), Encyclopaedia of Linguistics, Information & Control, Pergamon Press, London, 1969, 66–76.

[10]   B. R. Gaines, Stochastic computing systems, in: J. F. Tou (Eds.), Advances in Information Systems Science, Springer Science + Business Media, New York, 1969, 37–172.

[11]   R. G. Gallager, Discrete Stochastic Processes, Kluwer Academic Publishers, London, 1996.

[12]   P. Halmos, The legend of John Von Neumann, Amer. Math. Montly 80 (1973), 382–394. https://doi.org/10.1080/00029890.1973.11993293

[13]   P. Halmos, Lectures on Boolean Algebras, Springer-Verlag, New York, 1974.

[14]   T. H. Hildebrandt and I. J. Schoenberg, On linear functional operations and the moment problem for a finite interval in one or several dimensions, Ann. of Math. 34(2) (1933), 317–328. https://doi.org/10.2307/1968205

[15]   T. Kim and D. S. Kim, Some identities on truncated polynomials associated with degenerate Bell polynomials, Russ. J. Math. Phys. 28(3) (2021), 342–355. https://doi.org/10.1134/S1061920821030079

[16]   T. Kim and D. S. Kim, Degenerate Bernstein polynomials, Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Math. RACSAM 113(3) (2019), 2913–2920. https://doi.org/10.1007/s13398-018-0594-9

[17]   T. Kim, D. S. Kim, S.-H. Hyeon and J.-W. Park, Some new formulas of complete and incomplete degenerate Bell polynomials, Adv. Difference Equ. 2001(1) (2021), 1–10. https://doi.org/10.1186/s13662-021-03479-6

[18]   T. Kim, D. S. Kim, H. Y. Kim and J. Kwon, Degenerate Stirling polynomials of the second kind and some applications, Simmetry 11(8) (2019), 1–11. https://doi.org/10.3390/sym11081046

[19]   T. Kim, D. S. Kim, G.-W. Jang and J. Kwon, A note on degenerate Bernstein polynomials, J. Inequal. Appl. 2019(1) (2019), 1–12. https://doi.org/10.1186/s13660-019-2071-1

[20]   T. Kim, D. S. Kim, J. Kwon, H. Lee and S.-H. Park, Some properties of degenerate complete and partial Bell polynomials, Adv. Difference Equ. 2021(1) (2021), 1–12. https://doi.org/10.1186/s13662-021-03460-3

[21]   F. R. Kschischang, B. J. Frey and H. A. Loeliger, Factors graphs and the sum-product algorithm, IEEE Trans. Inform. Theory 47(2) (2001), 498–519. https://doi.org/10.1109/18.910572

[22]   G. G. Lorentz, Bernstein Polynomials, Chelsea Publishing Company, New York, 1986.

[23]   D. J. C. MacKay and M. R. Neal, Near Shannon limit performance of low density parity check codes, Electron. Lett. 32(18) (1996), 1645–1646. https://doi.org/10.1049/el:19961141

[24]   R. Muguruma and S. Yamashita, Stochastic number generation with the minimum inputs, IEICE Trans. Fundam. Electron. Commun. Comput. Sci. E100.A (2017), 1661–1671. https://doi.org/10.1587/transfun.E100.A.1661

[25]   K. P. Parker and E. J. McCluskey, Probabilistic treatment of general combinational networks, IEEE Trans. Comput. C-24(6) (1975), 668–670. https://doi.org/10.1109/T-C.1975.224279

[26]   D. Pérez and Y. Quintana, A survey on the Weierstrass approximation theorem, Divulg. Mat. 16(1) (2008), 231–247.

[27]   W. J. Poppelbaum, C. Afuso and J. W. Esch, Stochastic computing elements and systems, in: Proceedings of American Federation of Information Processing Societies, Fall Joint Computer Conference, Association for Computing Machinery, New York, 1967, 635–644. https://doi.org/10.1145/1465611.1465696

[28]   W. Qian and M. D. Riedel, The synthesis of robust polynomial arithmetic with stochastic logic, in: L. Fix and A. B. Kahng (Eds.), Design Automation Conference, IEEE, Anaheim, 2008, 648–653.

[29]   W. Qian, M. D. Riedel and I. Rosenberg, Uniform approximation and Bernstein polynomials with coefficients in the unit interval, European J. Combin. 32(3) (2011), 448–463. https://doi.org/10.1016/j.ejc.2010.11.004

[30]   Y. Quintana, Bernstein polynomials and stochastic computing, Rev. Mat. Atlantic Univ. MATUA 6(2) (2019), 32–49.

[31]   S. T. Ribeiro, Random-pulse machines, IEEE Trans. Electron. Comput. EC-16(3) (1967), 261–276. https://doi.org/10.1109/PGEC.1967.264662

[32]   M. D. Springer and W. E. Thompson, The distribution of products of beta, gamma and Gaussian random variables, SIAM J. Appl. Math. 18(4) (1970), 721–737. https://doi.org/10.1137/0118065

[33]   S. L. Toral, Análisis y síntesis de circuitos digitales estocásticos para la realización de sistemas analógicos. Ph.D. Thesis, Universidad de Sevilla, Spain (1999).