Critical Point Approaches for a Class of Differential Equations with Sturm-Liouville Type Nonhomogeneous Boundary Conditions


Download PDF

Authors: S. HEIDARKHANI AND F. AYAZI

DOI: 10.46793/KgJMat2504.503H

Abstract:

A class of p-Laplacian equations with Sturm-Liouville type nonhomogeneous boundary value problem with nonlinear derivative depending on two control parameters is investigated. Existence and multiplicity of solutions are discussed by means of variational methods and critical point theory. Two examples supporting our theoretical results are also presented.



Keywords:

Multiple solutions, p-Laplacian equation, Sturm-Liouville type nonhomogeneous boundary condition, variational methods.



References:

[1]   R. P. Agarwal, H. L. Hong and C. C. Yeh, The existence of positive solutions for the Sturm-Liouville boundary value problems, Comput. Math. Appl. 35(9) (1998), 89–96. http://scholarbank.nus.edu.sg/handle/10635/104293

[2]   D. Averna and G. Bonanno, A three critical points theorem and its applications to the ordinary Dirichlet problem, Topol. Methods Nonlinear Anal. 22(1) (2003), 93–104.

[3]   D. Averna and G. Bonanno, Three solutions for a quasilinear two-point boundary value problem involving the one-dimensional p-Laplacian, Proc. Edinb. Math. Soc. 47 (2004), 257–270. https://doi.org/10.1017/S0013091502000767

[4]   M. Bohner, G. Caristi, S. Heidarkhani and S. Moradi, A critical point approach to boundary value problems on the real line, Appl. Math. Lett. 76 (2018), 5 pages. https://doi.org/10.1016/j.aml.2017.08.017

[5]   G. Bonanno, Multiple critical points theorems without the Palais-Smale condition, J. Math. Anal. Appl. 299(2) (2004), 600–614. https://doi.org/10.1016/j.jmaa.2004.06.034

[6]   G. Bonanno and P. Candito, Non-differentiable functionals and applications to elliptic problems with discontinuous nonlinearities, J. Differ. Equ. 244(12) (2008), 3031–3059.

[7]   G. Bonanno and G. D’Aguì, A Neumann boundary value problem for the Sturm-Liouville equation, Appl. Math. Comput. 208(2) (2009), 318–327. https://doi.org/10.1016/j.amc.2008.12.029

[8]   G. Bonanno and G. Riccobono, Multiplicity results for Sturm-Liouville boundary value problems, Appl. Math. Comput. 210(2) (2009), 294–297. https://doi.org/10.1016/j.amc.2008.12.081

[9]   H. Brezis, Functional Analysis, Sobolev Spaces and Partial Differential Equations, Springer, New York, 2011.

[10]   L. Erbe and H. Wang, On the existence of positive solutions of ordinary differential equation, Proc. Amer. Math. Soc. 120 (1994), 743–748. https://doi.org/10.1090/S0002-9939-1994-1204373-9

[11]   W. Ge and J. Ren, New existence theorems of positive solutions for Sturm-Liouville boundary value problems, Appl. Math. Comput. 148(3) (2004), 631–644.

[12]   J. R. Graef, S. Heidarkhani and L. Kong, A critical points approach for the existence of multiple solutions of a Dirichlet quasilinear system, J. Math. Anal. Appl. 388(2) (2012), 1268–1278. https://doi.org/10.1016/j.jmaa.2011.11.019

[13]   J. R. Graef, S. Heidarkhani and L. Kong, Infinitely many solutions for systems of Sturm-Liouville boundary value problems, Results Math. 66 (2014), 327–341.

[14]   F. Sun, L. Liu and Y. Wu, Infinitely many solutions for a class of p-Laplacian equation with Sturm-Liouville type nonhomogeneous boundary conditions, J. Nonlinear Sci. Appl. 10(11) (2017), 6020–6034. http://dx.doi.org/10.22436/jnsa.010.11.37

[15]   Y. Tian, J. R. Graef, L. Kong and M. Wang, Three solutions for second-order impulsive differential inclusions with Sturm- Liouville boundary conditions via nonsmooth critical point theory, Topol. Methods Nonlinear Anal. 47(1) (2016), 17 pages. https://doi.org/10.12775/TMNA.2015.089

[16]   Y. Tian and W. Ge, Multiple solutions for a second-order Sturm-Liouville boundary value problem, Taiwanese J. Math. 11(4) (2007), 975–988. https://doi.org/10.11650/twjm/1500404796

[17]   Yu. Tian and W. Ge, Multiple solutions of Sturm-Liouville boundary value problem via lower and upper solutions and variational methods, Nonlinear Anal. 74(17) (2011), 6733–6746. https://doi.org/10.1016/j.na.2011.06.053

[18]   Y. Tian and W. Ge, Second-order Sturm-Liouville boundary value problem involving the one- dimensional p-Laplacian, Rocky Mountain J. Math. 38(1) (2008), 309–327. https://doi.org/10.1216/RMJ-2008-38-1-309