Numerical Treatment of Volterra-Fredholm Integro- Differential Equations of Fractional Order and its Convergence Analysis


Download PDF

Authors: A. PANDA AND J. MOHAPATRA

DOI: 10.46793/KgJMat2504.615P

Abstract:

This work deals with semi-analytical and numerical methods to solve a class of fractional order Volterra-Fredholm integro-differential equations. First, a semi-analytical method is proposed using the Chebyshev and Bernstein polynomials in the Adomian decomposition method. The uniqueness of the solution and convergence of the method are proved. Further, we solve the model using a numerical scheme comparing the L1 scheme for the fractional order derivative in combination with appropriate quadrature rules for the integral parts. Numerical experiments are done by the proposed methods to show their efficiency through a few tabular data and plots. Some comparisons with the existing results show that the proposed methods are highly productive and reliable.



Keywords:

Fractional integro-differential equation, convergence analysis, Bernstein polynomials, Chebyshev polynomials, L1 scheme.



References:

[1]   G. Adomian, A review of the decomposition method in applied mathematics, J. Math. Anal. Appl. 135(2) (1988), 501–544. https://doi.org/10.1016/0022-247X(88)90170-9

[2]   A. Aghajani, Y. Jalilian and J. Trujillo, On the existence of solutions of ractional integro-differential equations, Fract. Calc. Appl. Anal. 15(1) (2012), 44–69. https://doi.org/10.2478/s13540-012-0005-4

[3]   M. R. Ali, A. R. Hadhoud and H. Srivastava, Solution of fractional Volterra-Fredholm integro-differential equations under mixed boundary conditions by using the HOBW method, Adv. Differ. Equ. 2019(1) (2019), 1–9. https://doi.org/10.1186/s13662-019-2044-1

[4]   S. Alkan and V. F. Hatipoglu, Approximate solutions of Volterra-Fredholm integro-differential equations of fractional order, Tbil. Math. J. 10(2) (2017), 1–3. https://doi.org/10.1515/tmj-2017-0021

[5]   S. Amer, M. Saleh, M. Mohamed and N. Abdelrhman, Variational iteration method and Adomian decomposition method for fourth-order fractional integro-differential equations, Int. J. Comput. Appl. 80(6) (2013), 7–14. https://doi.org/10.5120/13863-1718

[6]   E. Babolian and M. Hosseini, A modified spectral method for numerical solution of ordinary differential equations with non-analytic solution, Appl. Math. Comp. 132(2–3) (2002), 341–351. https://doi.org/10.1016/S0096-3003(01)00197-7

[7]   C. D. Boor, C. Gout, A. Kunoth and C. Rabut, Multivariate approximation: theory and applications. An overview, Numer. Algorithm 48(1) (2008), 1–9. https://doi.org/10.1007/s11075-008-9190-y

[8]   C. Canuto, M. Y. Hussaini, A. Quarteroni and T. Zang, Spectral Methods: Evolution to Complex Geometries and Applications to Fluid Dynamics, Springer-Verlag, Heidelberg, 2007.

[9]   P. Das, H. Rana and S. Rana, A perturbation based approach for solving fractional-order Volterra-Fredholm integro-differential equations and its convergence analysis, Int. J. Comput. Appl. 97(10) (2019), 1994–2014. https://doi.org/10.1080/00207160.2019.1673892

[10]   D. Gottlieb and S. Orszag, Numerical Analysis of Spectral Methods: Theory and Applications, CBMS-NSF, Society for Industrial and Applied Mathematics, Philadelphia, PA, 1997. https://doi.org/10.1137/1.9781611970425

[11]   J. L. Gracia, E. O’Riordan and M. Stynes, Convergence in positive time for a finite difference method applied to a fractional convection-diffusion problem, Comput. Methods. Appl. Math. 18(1) (2018), 33–42. https://doi.org/10.1515/cmam-2017-0019

[12]   A. A. Hamoud and K. P. Ghadle, Modified Laplace decomposition method for fractional Volterra-Fredholm integro-differential equations, J. Math. Model. 6(1) (2018), 91–104. https://doi.org/10.22124/jmm.2018.2826

[13]    A. A. Hamoud, K. P. Ghadle, M. B. Issa and G. Giniswamy, Existence and uniqueness theorems for fractional Volterra-Fredholm integro-differential equations, Int. J. Appl. Math. 31(3) (2018), 333–348. http://dx.doi.org/10.12732/ijam.v31i3.3

[14]   M. Heydari, M. R. Hooshmandasl, F. Maalek, Ghaini and M. Li, Chebyshev wavelets method for solution of nonlinear fractional integro-differential equations in a large interval, Adv. Math. Phys. 2013 (2013), Article ID 482083. https://doi.org/10.1155/2013/482083

[15]   M. Hosseini, Adomian decomposition method with Chebyshev polynomials, Appl. Math. Comp. 175(2) (2006), 1685–1693. https://doi.org/10.1016/j.amc.2005.09.014

[16]   E. Keshavarz, Y. Ordokhani and M. Razzaghi, Numerical solution of nonlinear mixed Fredholm-Volterra integro-differential equations of fractional order by Bernoulli wavelets, Comput. Methods Differ. Equ. 7(2) (2019), 163–176.

[17]   R. Kavehsarchogha, R.  Ezzati, N. Karamikabir and F. M. Yaghobbi, A new method to solve dual systems of fractional integro-differential equations by Legendre wavelets, Kragujevac J. Math. 45(6) (2021), 951–968. https://doi.org/10.46793/KgJMat2106.951K

[18]   Y. Lin and C. Xu, Finite difference/spectral approximations for the time-fractional diffusion equation, J. Comput. Phys. 225(2) (2007), 1533–1552. https://doi.org/10.1016/j.jcp.2007.02.001

[19]   Y. Liu, Adomian decomposition method with orthogonal polynomials: Legendre polynomials, Math. Comput. Model. 49(1–2) (2009), 1268–1273. https://doi.org/10.1016/j.mcm.2008.06.020

[20]   H. Marasi and M. Derakhshan, Haar wavelet collocation method for variable order fractional integro-differential equations with stability analysis, Comp. Appl. Math. 41 (2022), Article ID 106. https://doi.org/10.1007/s40314-022-01792-8

[21]   F. Mirzaee and S. Alipour, A hybrid approach of nonlinear partial mixed integro-differential equations of fractional order, Iran J. Sci. Tech. Trans. Sci. 44 (2020), 725–737. https://doi.org/10.1007/s40995-020-00859-7

[22]   E. O’ Riordon, M. Stynes and J. L. Gracia, Error analysis of a finite difference method on graded meshes for a time-fractional diffusion equation, SIAM J. Numer. Anal. 55(2) (2017), 1057–1079. https://doi.org/10.1137/16M1082329

[23]    I. Podlubny, R. L. Magin and I. Trymorush, Niels Henrik Abel and the birth of fractional calculus, Fract. Calc. Appl. Anal. 20 (2017), 1068–1075. https://doi.org/10.1515/fca-2017-0057

[24]   A. Panda, S. Santra. and J. Mohapatra, Adomian decomposition and homotopy perturbation method for the solution of time fractional partial integro-differential equations, J. Appl. Math. Comput. 68(3) (2022), 2065–2082. https://doi.org/10.1007/s12190-021-01613-x

[25]   A. Qasim and E. AL-Rawi, Adomian decomposition method with modified Bernstein polynomials for solving ordinary and partial differential equations, J. Appl. Math. 2018 (2018), Article ID 1803107. https://doi.org/10.1155/2018/1803107

[26]   A. Roohollahi, B. Ghazanfari, and S. Akhavan, Numerical solution of the mixed Volterra-Fredholm integro-differential multi-term equations of fractional order, J. Comput. Appl. Math. 376 (2020), Article ID 112828. https://doi.org/10.1016/j.cam.2020.112828

[27]   S. Santra and J. Mohapatra, Numerical analysis of Volterra integro-differential equations with caputo fractional derivative, Iran J. Sci. Technol. Trans. A. Sci. 45(5) (2021), 1815–1824. https://doi.org/10.1007/s40995-021-01180-7

[28]   H. Solari and M. Natiello, Linear processes in stochastic population dynamics: theory and application to insect development, Sci. World J. 2014 (2014), Article ID 873624. https://doi.org/10.1155/2014/873624

[29]   V. Tarasov, Fractional integro-differential equations for electromagnetic waves in dielectric media, Theor. Math. Phys. 158(3) (2009), 355–359. https://doi.org/10.1007/s11232-009-0029-z

[30]   S. Vanani and A. Aminataei, Operational tau approximation for a general class of fractional integro-differential equations, Comput. Appl. Math. 30(3) (2011), 655–674. http://dx.doi.org/10.1590/S1807-03022011000300010