Ideal Relative Uniform Convergence of Double Sequence of Positive Linear Functions
Download PDF
Authors: K. R. DEVI AND B. C. TRIPATHY
DOI: 10.46793/KgJMat2505.697D
Abstract:
In this article, we look into the concept of ideal relative uniform convergence of a double sequence of functions. In addition, we define ideal relative uniform Cauchy and ideal regular relative uniform convergence of a double sequence of positive linear functions defined on a compact domain D with respect to the scale function σ(x) defined on D. We also introduced several classes of ideal relative uniform convergent double sequences of functions and investigated their algebraic and topological properties.
Keywords:
Double sequence, Density, Ideal convergence, Statistical convergence, Relative uniform convergence, Regular convergence
References:
[1] M. Basarır and O. Sonalcan, On some double sequence spaces, J. Indian Acad. Math. 21(2) (1999), 193–200.
[2] T. J. I’a. Bromwich, An Introduction to the Theory of Infinite Series, Macmillan & Co. Ltd., New York, 1965.
[3] E. W. Chittenden, Relatively uniform convergence of sequences of functions, Trans. Amer. Math. Soc. 15 (1914), 197–201. https://doi.org/10.2307/1988752
[4] B. Das, B. C. Tripathy, P. Debnath and B. Bhattacharya, Characterization of statistical convergence of complex uncertain double sequence, Anal. Math. Phys. 10(4) (2020), 1–20. https://doi.org/10.1007/s13324-020-00419-7
[5] D. Datta and B. C. Tripathy, Convergence of complex uncertain double sequences, New Mathematics and Natural Computation 16(3) (2020), 447-459. https://doi.org/10.1142/S1793005720500271
[6] D. Datta and B. C. Tripathy, Double sequences of complex uncertain variables defined by Orlicz function, New Mathematics and Natural Computation 16(3) (2020), 541–550. https://doi.org/10.1142/S1793005720500325
[7] K. Demirci and S. Orhan, Statistically relatively uniform convergence of positive linear operators, Results Math. 69 (2016), 359–367. https://doi.org/10.1007/s00025-015-0484-9
[8] K. Demirci and S. Orhan, Statistical relative approximation on modular spaces, Results Math. 71 (2017), 1167–1184. https://doi.org/10.1007/s00025-016-0548-5
[9] K. R. Devi and B. C. Tripathy, Relative uniform convergence of difference double sequence of positive linear functions, Ric. Mat. (2021). https://doi.org/10.1007/s11587-021-00613-0
[10] K. R. Devi and B. C. Tripathy, Relative uniform convergence of difference sequence of positive linear functions, Trans. A. Razmadze Math. Inst. 176(1) (2022), 37–43.
[11] E. Dündar and B. Altay, On some properties of ℐ2-convergence and ℐ2-Cauchy of double sequences, Gen. Math. Notes 7(1) (2011), 1–12.
[12] E. Dündar, Regularly (ℐ2,ℐ)-convergence and (ℐ2,ℐ)-Cauchy double sequences of functions, Pioneer Journal of Algebra, Number Theory and its Applications 1(2) (2011), 85–98.
[13] E. Dündar and B. Altay, ℐ2-convergence and ℐ2-Cauchy of double sequences, Acta Math. Sci. Ser. B (Engl. Ed.) 34(2) (2014), 343–353. https://doi.org/10.1016/S0252-9602(14)60009-6
[14] E. Dündar and B. Altay, ℐ2-convergence of double sequences of functions, Electron. J. Math. Anal. Appl. 3(1) (2015), 111–121.
[15] E. Dündar and B. Altay, ℐ2-uniform convergence of double sequences of functions, Filomat 30(5) (2016), 1273–1281. https://doi.org/10.2298/FIL1605273D
[16] E. Dündar and N. P. Akın, Wijsman regularly ideal convergence of double sequences of sets, Journal of Intelligent and Fuzzy Systems 37(6) (2019), 8159–8166. https://doi.org/10.3233/JIFS-190626
[17] H. Fast, Sur la convergence statistique, Colloq. Math. 2 (1951), 241–244.
[18] J. A. Fridy, On statistical convergence, Analysis 5 (1985), 301–313.
[19] A. Gökhan, M. Güngör and M. Et, Statistical convergence of double sequences of real valued functions, International Mathematical Forum 2(8) (2007), 365–374. https://doi.org/10.12988/IMF.2007.07033
[20] G. H. Hardy, On the convergence of certain multiple series, Proc. Lond. Math. Soc. (3) s2-1 (1)(1904), 124–128. https://doi.org/10.1112/plms/s2-1.1.124
[21] P. Kostyrko, T. Šalát and W. Wilczynski, I-convergence, Real Anal. Exchange 26(2) (2000/2001), 669–686.
[22] F. Móricz, Statistical convergence of multiple sequences, Arch. Math. 81 (2003), 82–89. https://doi.org/10.1007/s00013-003-0506-9
[23] E. H. Moore, An introduction to a Form of General Analysis, The New Haven Mathematical Colloquium, Yale University Press, New Haven, 1910.
[24] Mursaleen and O. H. H. Edely, Statistical convergence of double sequences, J. Math. Anal. Appl. 288 (2003), 223–231. https://doi.org/10.1016/j.jmaa.2003.08.004
[25] A. Pringsheim, Zur theorie der zweifach unendlichen zahlenfolgen, Math. Ann. 53 (1900), 289–321.
[26] P. Okçu Şahin and F. Dirik, Statistical relative uniform convergence of double sequences of positive linear operators, Appl. Math. E-Notes 17 (2017), 207–220.
[27] T. Šalát, B. C. Tripathy and M. Ziman, On I-convergence field, Ital. J. Pure Appl. Math. 17 (2005), 45–54.
[28] I. J. Schoenberg, The integrability of certain functions and related summability methods, Amer. Math. Monthly 66(5) (1959), 361–375. https://doi.org/10.1080/00029890.1959.11989303
[29] H. Steinhaus, Sur la convergence ordinaire et la convergence asymtotique, Colloq. Math. 2 (1951), 73–74.
[30] B. C. Tripathy, Statistically convergent double sequences, Tamkang J. Math. 34(3) (2003), 231–237. https://doi.org/10.5556/j.tkjm.34.2003.314
[31] B. C. Tripathy and B. Sarma, Statistically convergent difference double sequence spaces, Acta Math. Sin. (Engl. Ser.) 24(5) (2008), 737–742. https://doi.org/10.1007/s10114-007-6648-0
[32] B. C. Tripathy and B. Hazarika, I-convergent sequence spaces associated with multiplier sequence spaces, Math. Inequal. Appl. 11(3) (2008), 543–548. https://doi.org/10.7153/mia-11-43
[33] B. C. Tripathy and S. Mahanta, On I-acceleration convergence of sequences, J. Franklin Inst. 347(3) (2010), 591–598. https://doi.org/10.1016/j.jfranklin.2010.02.001
[34] B. C. Tripathy and B. Hazarika, I-monotonic and I-convergent sequences, Kyungpook Math. J. 51 (2011), 233–239. https://doi.org/10.5666/KMJ.2011.51.2.233
[35] B. C. Tripathy, M. Sen and S. Nath, I-convergence in probabilistic n-normed space, Soft Computing 16 (2012), 1021–1027. https://doi.org/10.1007/s00500-011-0799-8
[36] B. C. Tripathy and B. Sarma, On I-convergent double sequences of fuzzy real numbers, Kyungpook Math. J. 52(2) (2012), 189–200. https://doi.org/10.5666/KMJ.2012.52.2.189
[37] B. C. Tripathy and M. Sen, On fuzzy I-convergent difference sequence space, Journal of Intelligent & Fuzzy Systems 25 (2013), 643–647. https://doi.org/10.3233/IFS-120671
[38] B. C. Tripathy and M. Sen, Paranormed I-convergent double sequence spaces associated with multiplier sequences, Kyungpook Math. J. 54(2) (2014), 321–332. https://doi.org/10.5666/KMJ.2014.54.2.321
[39] B. K. Tripathy and B. C. Tripathy, On I-convergent double sequences, Soochow Journal of Mathematics 31(4) (2005), 549–560.
[40] S. Yıldız, ℐ2-relative uniform convergence and Korovkin type approximation, Acta Comment. Univ. Tartu. Math. 25(2) (2021), 189–200.