Vague Weak Interior Ideals of Γ-Semirings.


Download PDF

Authors: Y. BHARGAVI, A. REZAEI, T. ESWARLAL AND S. RAGAMAYI

DOI: 10.46793/KgJMat2505.711B

Abstract:

The notion of a ((complete-) normal) vague weak interior ideal on a (regular) Γ-semiring is defined. It is proved that the set of all vague weak interior ideals forms a complete lattice. Also, a characterization theorem for a regular Γ-semiring in terms of vague weak interior ideals is derived. Another interesting consequence of the main result is that the cardinal of a non-constant maximal element in the set of all (complete-) normal vague weak interior ideals is 2.



Keywords:

(Vague) Γ-semiring, left (resp. right) vague ideal, vague (weak) interior ideal, ((complete-) normal) vague weak interior ideal.



References:

[1]   Y. Bhargavi, A study on translational invariant vague set of a Γ-semiring, Afr. Mat. 31 (2020), 1273–1282. https://doi.org/10.1007/s13370-020-00794-1

[2]   Y. Bhargavi, Operations on vague ideals of a Γ-semirings, Int. Conf. Signal Proc. Comm. Eng. Syst. Jun 2021, Guntur (Dist.), A.P-India, AIP Conf. Proc. (2023) (to appear).

[3]   Y. Bhargavi and T. Eswarlal, Vague semiprime ideals of a Γ-semirings, Afr. Mat. 29(3-4) (2018), 425–434. https://doi.org/10.1007/s13370-018-0551-y

[4]   Y. Bhargavi and T. Eswarlal, Vague Γ-semirings, Glob. J. Pure Appl. Math. 11(1) (2015), 117–127.

[5]   Y. Bhargavi and T. Eswarlal, Vague ideals and normal vague ideals in Γ-semirings, Int. J. Innov. Res. Dev. 4(3) (2015), 1–8.

[6]   T. K. Dutta and S. K. Sardar, Semiprime ideals and irreducible ideals of Γ-semiring, Novi Sad J.  Math. 30(1) (2000), 97–108.

[7]   T. Eswarlal, Vague ideals and normal vague ideals in semirings, Int. J. Comput. Cognition 6(3) (2008), 60–65.

[8]   W. L. Gau and D. J. Buehrer, Vague sets, IEEE Trans. Syst. Man Cybern. 23(2) (1993), 610–614. https://doi.org/10.1109/21.229476

[9]   H. Hedayati and K. P. Shum, An introduction to Γ-semirings, Int. J. Algebra, 5(15) (2011), 709–726.

[10]   K. Iseki, Ideal theory of semiring, Proc. Japan Acad. 32(8) (1956), 554–559. https://doi:10.3792/pja/1195525272

[11]   Y. B. Jun and C. H. Park, Vague ideal in subtraction algebra, Int. Math. Forum 2(57–60) (2007), 2919–2926. http://dx.doi.org/10.12988/imf.2007.07266

[12]   N. Ramakrishna, Vague normal groups, Int. J.  Comput. Cognition 6(2) (2008), 1–32.

[13]   M. K. Rao, Weak-interior ideals and fuzzy weak-interior ideals of Γ-semirings, J.  Int. Math. Virtual Inst. 10(1) (2020), 75–91. https://doi.org/10.7251/JIMVI2001075R

[14]   M. K. Rao, Γ-semiring I, Southeast Asian Bull. Math. 19(1) (1995), 49–54.

[15]   M. K. Rao, Γ-semiring II, Southeast Asian Bull. Math. 21(3) (1997), 281–287.

[16]   M. K. Rao and B. Venkateswarlu, Bi-interior Ideals in Γ-semirings, Discuss. Math. Gen. Algebra Appl. 38(2) (2018), 239–254. https://doi.org/10.7151/dmgaa.1296

[17]   M. K. Sen, On Γ-semigroup, Proc. of the Int. Conf. on Algebra and its Appl. New Delhi, 1981, 301–308, Lect. Notes in Pure and Appl. Math. 91, Dekker, New York, 1984.

[18]   H. S. Vandiver, Note on a simple type of algebra in which the cancellation law of addition does not hold, Bull. Amer. Math. Soc. 40(12) (1934), 914–920.

[19]   L. A. Zadeh, Fuzzy sets, Inf. Control 8 (1965), 338–353.