Symmetric n-Additive Mappings Admitting Semiprime Ring


Download PDF

Authors: K. KUMAR

DOI: 10.46793/KgJMat2505.755K

Abstract:

Let be a ring with centre Z(). An n-additive map D : n →ℛ is called symmetric n-additive if D(x1,,xn) = D(xπ(1),,xπ(n)) for all xi ∈ℛ and for every permutation (π(1),π(2),,π(n)). A mapping : ℛ→ℛ defined by (x) = D(x,x,,x) is called the trace of D. In this paper, we prove that a nonzero Lie ideal L of a semiprime ring of characteristic different from (2n 2) is central, if it satisfies any one of the following properties: (i) ([x,y]) xy Z(); (ii) ([x,y]) [y,x] Z(); (iii) (xy) ∓△(x) [x,y] Z(); (iv) ([x,y]) yx Z(); (v) (xy) ∓△(y) [x,y] Z().



Keywords:

Semiprime rings, Lie ideals, Symmetric n-additive mapping, Trace.



References:

[1]   A. Ali and K. Kumar, Traces of permuting n-additive mappings in -prime rings, J. Algebra Relat. Topics 8(2) (2020), 9–21. https://doi.org/10.22124/JART.2020.16288.1200

[2]   Gy. Maksa, A remark on symmetric biadditive functions having non-negative diagonalization, Glas. Mat. 15(35) (1980), 279–282. https://doi.org/10.2298/FIL1103001A

[3]   Gy. Maksa, On the trace of symmetric biderivations, C. R. Math. Acad. Sci. Soc. R. Can. 9 (1987), 303–307. https://doi.org/10.2298/FIL1103001A

[4]   I. N. Herstien, Rings with Involution, Chicago Lectures in Mathematics, University of Chicago Press, Chicago, III, USA, 1976.

[5]   I. N. Herstien, On Lie structure of an associative ring, J. Algebra 14(4) (1970), 561–571. https://doi.org/10.1016/0021-8693(70)90103-1

[6]   J. Vukman, Symmetric biderivations on prime and semiprime rings, Aequationes Math. 38 (1989), 245–254. https://doi.org/10.1007/BF01840009

[7]   J. Vukman, Two results concerning symmetric biderivations on prime rings, Aequationes Math. 40 (1990), 181–189. https://doi.org/10.1007/BF02112294

[8]   K. Kumar, -alpha-derivation on prime -rings, J. Algebra Relat. Topics 10(1) (2022), 63–69. https://doi.org/10.22124/JART.2021.20488.1312

[9]   K. H. Park, On prime and semiprime rings with symmetric n-derivations, J. Chungcheong Math. Soc. 22 (2009), 451–458.

[10]   K. H. Park and Y. S. Jung, On permuting 3-derivations and commutativity in prime near rings, Commun. Korean Math. Soc. 25 (2010), 1–9. https://doi.org/10.4134/CKMS.2010.25.1.001

[11]   M. Bresar, Commuting traces of biadditive mappings, commutativity-preserving mappings and Lie mappings, Trans. Amer. Math. Soc. 335 (1993), 525–546. https://doi.org/10.2307/2154392

[12]   M. Bresar, Functional identities: A survey, Contemporary Math. 259 (2000), 93–109.