Symmetric n-Additive Mappings Admitting Semiprime Ring
Download PDF
Authors: K. KUMAR
DOI: 10.46793/KgJMat2505.755K
Abstract:
Let ℛ be a ring with centre Z(ℛ). An n-additive map D : ℛn →ℛ is called symmetric n-additive if D(x1,…,xn) = D(xπ(1),…,xπ(n)) for all xi ∈ℛ and for every permutation (π(1),π(2),…,π(n)). A mapping △ : ℛ→ℛ defined by △(x) = D(x,x,…,x) is called the trace of D. In this paper, we prove that a nonzero Lie ideal L of a semiprime ring ℛ of characteristic different from (2n − 2) is central, if it satisfies any one of the following properties: (i) △([x,y]) ∓ xy ∈ Z(ℛ); (ii) △([x,y]) ∓ [y,x] ∈ Z(ℛ); (iii) △(xy) ∓△(x) ∓ [x,y] ∈ Z(ℛ); (iv) △([x,y]) ∓ yx ∈ Z(ℛ); (v) △(xy) ∓△(y) ∓ [x,y] ∈ Z(ℛ).
Keywords:
Semiprime rings, Lie ideals, Symmetric n-additive mapping, Trace.
References:
[1] A. Ali and K. Kumar, Traces of permuting n-additive mappings in ∗-prime rings, J. Algebra Relat. Topics 8(2) (2020), 9–21. https://doi.org/10.22124/JART.2020.16288.1200
[2] Gy. Maksa, A remark on symmetric biadditive functions having non-negative diagonalization, Glas. Mat. 15(35) (1980), 279–282. https://doi.org/10.2298/FIL1103001A
[3] Gy. Maksa, On the trace of symmetric biderivations, C. R. Math. Acad. Sci. Soc. R. Can. 9 (1987), 303–307. https://doi.org/10.2298/FIL1103001A
[4] I. N. Herstien, Rings with Involution, Chicago Lectures in Mathematics, University of Chicago Press, Chicago, III, USA, 1976.
[5] I. N. Herstien, On Lie structure of an associative ring, J. Algebra 14(4) (1970), 561–571. https://doi.org/10.1016/0021-8693(70)90103-1
[6] J. Vukman, Symmetric biderivations on prime and semiprime rings, Aequationes Math. 38 (1989), 245–254. https://doi.org/10.1007/BF01840009
[7] J. Vukman, Two results concerning symmetric biderivations on prime rings, Aequationes Math. 40 (1990), 181–189. https://doi.org/10.1007/BF02112294
[8] K. Kumar, ∗-alpha-derivation on prime ∗-rings, J. Algebra Relat. Topics 10(1) (2022), 63–69. https://doi.org/10.22124/JART.2021.20488.1312
[9] K. H. Park, On prime and semiprime rings with symmetric n-derivations, J. Chungcheong Math. Soc. 22 (2009), 451–458.
[10] K. H. Park and Y. S. Jung, On permuting 3-derivations and commutativity in prime near rings, Commun. Korean Math. Soc. 25 (2010), 1–9. https://doi.org/10.4134/CKMS.2010.25.1.001
[11] M. Bresar, Commuting traces of biadditive mappings, commutativity-preserving mappings and Lie mappings, Trans. Amer. Math. Soc. 335 (1993), 525–546. https://doi.org/10.2307/2154392
[12] M. Bresar, Functional identities: A survey, Contemporary Math. 259 (2000), 93–109.