On some Combinatorial Properties of Generalized Commutative Pell and Pell-Lucas Quaternions


Download PDF

Authors: D. BRóD AND A. SZYNAL-LIANA

DOI: 10.46793/KgJMat2506.889B

Abstract:

Generalized commutative quaternions generalize elliptic, parabolic and hyperbolic quaternions, bicomplex numbers, complex hyperbolic numbers and hyperbolic complex numbers. In this paper, we study generalized commutative Pell quaternions and generalized commutative Pell-Lucas quaternions. We present some properties of these numbers and relations between them.



Keywords:

Quaternions, generalized quaternions, Pell numbers, Pell-Lucas numbers.



References:

[1]   F. T. Aydın, On bicomplex Pell and Pell-Lucas numbers, Communications in Advanced Mathematical Sciences 1(2) (2018), 142–155. https://doi.org/10.33434/cams.439752

[2]   G. Bilgici and P. Catarino, Unrestricted Pell and Pell-Lucas quaternions, International Journal of Mathematics and System Science 1(3) (2018), 1–4. http://dx.doi.org/10.24294/ijmss.v1i3.816

[3]   C. B. Çimen and A. İpek, On Pell quaternions and Pell-Lucas quaternions, Adv. Appl. Clifford Algebr. 26 (2016), 39–51. https://doi.org/10.1007/s00006-015-0571-8

[4]   J. Ercolano, Matrix generators of Pell sequences, Fibonacci Quart. 17(1) (1979), 71–77.

[5]   A. F. Horadam, Minmax sequences for Pell numbers, Applications of Fibonacci Numbers 6 (1996), 231–249.

[6]   A. F. Horadam, Pell identities, Fibonacci Quart. 9.3 (1971), 245–263.

[7]   N. Patel and P. Shrivastava, Pell and Pell-Lucas identities, Global Journal of Mathematical Sciences: Theory and Practical 5(4) (2013), 229–236.

[8]   A. Szynal-Liana and I. Włoch, Generalized commutative quaternions of the Fibonacci type, Bol. Soc. Mat. Mex. 281 (2022). https://doi.org/10.1007/s40590-021-00386-4

[9]   A. Szynal-Liana and I. Włoch, Hypercomplex Numbers of the Fibonacci Type, Oficyna Wydawnicza Politechniki Rzeszowskiej, Rzeszów, 2019.

[10]   A. Szynal-Liana and I. Włoch, On Pell and Pell-Lucas hybrid numbers, Comment. Math. 58(1–2) (2018), 11–17. http://dx.doi.org/10.14708/cm.v58i1-2.6364

[11]   A. Szynal-Liana and I. Włoch, The Pell quaternions and the Pell octonions, Adv. Appl. Clifford Algebr. 26 (2016), 435–440. https://doi.org/10.1007/s00006-015-0570-9

[12]   Ü.Tokeşer, Z. Ünal and G. Bilgici, Split Pell and Pell-Lucas quaternions, Adv. Appl. Clifford Algebr. 27 (2017), 1881–1893. https://doi.org/10.1007/s00006-016-0747-x