Discrete Local Fractional Hilbert-type Inequalities


Download PDF

Authors: P. VUKOVIć AND W. YANG

DOI: 10.46793/KgJMat2506.899V

Abstract:

The main objective of this paper is a study of some new discrete local fractional Hilbert-type inequalities. We apply our general results to homogeneous kernels. Also, the obtained results have the best possible constants.



Keywords:

Hilbert inequality, conjugate parameters, homogeneous function, local fractional calculus.



References:

[1]   G. H. Hardy, J. E. Littlewood and G. Pólya, Inequalities, Second Edition, Cambridge University Press, Cambridge, 1967.

[2]   F. Jarad, T. Abdeljawad and J. Alzabut, Generalized fractional derivatives generated by a class of local proportional derivatives, European Physical Journal Special Topics 226 (2017), 3457–3471. https://doi.org/10.1140/epjst/e2018-00021-7

[3]   J. V. C. Sousa, D. S. Oliveira and E. C. Oliveira, Grüss-type inequalities by means of generalized fractional integrals, Bull. Braz. Math. Soc. (N.S.) 50 (2019), 1029–1047. https://doi.org/10.1007/s00574-019-00138-z

[4]   W. Yang, Certain new Chebyshev and Grüss-type inequalities for unified fractional integral operators via an extended generalized Mittag-Leffler function, Fractal and Fractional 6(4) (2022), Paper ID 182, 27 pages. https://doi.org/10.3390/fractalfract6040182

[5]   W. Yang, Certain new weighted Young and Pólya-Szegö-type inequalities for unified fractional integral operators via an extended generalized Mittag-Leffler function with applications, Fractals 30(6) (2022), Paper ID 2250106, 37 pages. https://doi.org/10.1142/S0218348X22501067

[6]   X. J. Yang, Local Fractional Functional Analysis and its Applications, Asian Academic Publisher Limited, Hong Kong, 2011.

[7]   X. J. Yang, Advanced Local Fractional Calculus and its Applications, World Science Publisher, New York, 2012.

[8]   X. J. Yang, D. Baleanu and H. M. Srivastava, Advanced analysis of local fractional calculus applied to the rice theory in fractal fracture mechanics, in: J. Singh, H. Dutta, D. Kumar, D. Baleanu and J. Hristov (Eds.), Methods of Mathematical Modelling and Computation for Complex Systems, Studies in Systems, Decision and Control, Vol. 373. Springer, Cham, 2022.

[9]   M. Krnić and P. Vuković, Multidimensional Hilbert-type inequalities obtained via local fractional calculus, Acta Appl. Math. 169(1) (2020), 667–680. https://doi.org/10.1007/s10440-020-00317-x

[10]   G. Jumarie, Fractional Euler’s integral of first and second kinds. Application to fractional Hermite’s polynomials and to probability density of fractional order, J. Appl. Math. Inform. 28 (2010), 257–273.

[11]   Q. Liu, A Hilbert-type fractional integral inequality with the kernel of Mittag-Leffler function and its applications, Math. Inequal. Appl. 21(3) (2018), 729–737. https://dx.doi.org/10.7153/mia-2018-21-52

[12]   Q. Liu and D. Chen, A Hilbert-type integral inequality on the fractal spaces, Integral Transforms Spec. Funct. 28(10) (2017), 772–780. https://doi.org/10.1080/10652469.2017.1359588

[13]   T. Batbold, M. Krnić and P. Vuković, A unified approach to fractal Hilbert-type inequalities, J. Inequal. Appl. 2019 (2019), Paper ID 117, 13 pages. https://doi.org/10.1186/s13660-019-2076-9

[14]   Y. Li, S. Rashid, Z. Hammouch, D. Baleanu and Y. Chu, New Newton’s type estimates pertaining to local fractional integral via generalized p-convexity with applications, Fractals 29(5) (2021), Paper ID 2140018, 20 pages. https://doi.org/10.1142/S0218348X21400181

[15]   M. Z. Sarikaya, T. Tunc and H. Budak, On generalized some integral inequalities for local fractional integrals, Appl. Math. Comput. 276 (2016), 316–323. https://doi.org/10.1016/j.amc.2015.11.096

[16]   S. Iftikhar, P. Kumam and S. Erden, Newton’s-type integral inequalities via local fractional integrals, Fractals 28(3) (2020), Paper ID 2050037, 13 pages. https://doi.org/10.1142/S0218348X20500371

[17]   A. Akkurt, M. Z. Sarikaya, H. Budak and H. Yildirim, Generalized Ostrowski type integral inequalities involving generalized moments via local fractional integrals, Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. 111(3) (2017), 797–807. https://doi.org/10.1007/s13398-016-0336-9

[18]   M. Z. Sarikaya and H. Budak, Generalized Ostrowski type inequalities for local fractional integrals, Proc. Amer. Math. Soc. 145(4) (2017), 1527–1538. http://dx.doi.org/10.1090/proc/13488

[19]   W. Sun, Hermite-Hadamard type local fractional integral inequalities with Mittag-Leffler kernel for generalized preinvex functions, Fractals 29(8) (2021), Paper ID 2150253, 13 pages. https://doi.org/10.1142/S0218348X21502534

[20]   J. Choi, E. Set and M. Tomar, Certain generalized Ostrowski type inequalities for local fractional integrals, Commun. Korean Math. Soc. 32(3) (2017), 601–617. https://doi.org/10.4134/CKMS.c160145

[21]   H. Mo, X. Sui and D. Yu, Generalized convex functions on fractal sets and two related inequalities, Abstr. Appl. Anal. 2014 (2014), Paper ID 636751, 7 pages. https://doi.org/10.1155/2014/254737

[22]   H. Budak, M. Z. Sarikaya and H. Yildirim, New inequalities for local fractional integrals, Iran. J. Sci. Technol. Trans. A Sci. 41(4) (2017), 1039–1046. https://doi.org/10.1007/s40995-017-0315-9